

Objectives

- Review basic navigation concepts
- Describe coordinate systems
- Identify attitude determination techniques
- Prime: PGNCS IMU Management
- Backup: CSM SCS/LM AGS Attitude Management
- Identify state vector determination techniques
- Prime: PGNCS Coasting Flight Navigation
- Prime: PGNCS Powered Flight Navigation
- Backup: LM AGS Navigation

Review of Basic Navigation Concepts

- Navigation: "Where am I?"
?

Review of Basic Navigation Concepts

- Navigation: "Where am I?"
- Vehicle maintains internal representation of where it is with respect to some external reference (coordinate system)
- State vector (position and velocity vectors)

Review of Basic Navigation Concepts

- Navigation: "Where am I?"
- Vehicle maintains internal representation of where it is with respect to some external reference (coordinate system)
- State vector (position and velocity vectors)
- Attitude

Review of Basic Navigation Concepts

- Navigation: "Where am I?"
- Vehicle maintains internal representation of where it is with respect to some external reference (coordinate system)
- State vector (position and velocity vectors)
- Attitude
- To maintain accuracy, this internal representation must be updated periodically using some source of external "truth data" (sensor measurements)

Coordinate Systems

Planet-Fixed Coordinates

Basic Reference Coordinate System

- Inertial coordinate system
- All nav stars and lunar/solar ephemerides were referenced to this system
- All vehicle state vectors referenced to this system except during Lunar Module (LM) powered flight
- Epoch at nearest beginning of year
- Simplified inertial-to-Earth-fixed computations

Basic Reference Coordinate System

- Origin at center of Earth or center of moon

Basic Reference Coordinate System

- Origin at center of Earth or center of moon
- Command and Service Module (CSM) navigation automatically transformed between Earth and moon centered when crossing the moon's Sphere of Influence (SOI)

Basic Reference Coordinate System

- Origin at center of Earth or center of moon
- Command and Service Module (CSM) navigation automatically transformed between Earth and moon centered when crossing the moon's Sphere of Influence (SOI)
- Axes:
- X-axis pointed to First Point of Aries

Basic Reference Coordinate System

- Origin at center of Earth or center of moon
- Command and Service Module (CSM) navigation automatically transforms between Earth and moon centered when crossing the moon's Sphere of Influence (SOI)
- Axes:
- X-axis pointed to First Point of Aries
- Z axis parallel to Earth mean north pole

Basic Reference Coordinate System

- Origin at center of Earth or center of moon
- Command and Service Module (CSM) navigation automatically transforms between Earth and moon centered when crossing the moon's Sphere of Influence (SOI)
- Axes:

- Z axis parallel to Earth mean north pole
- Y axis completed righthanded system

I MU Stable Member Coordinate System

- Inertial coordinate system
- Defined relative to BRCS by REFerence to Stable Member MATrix (REFSMMAT)
- Many possible alignments during a mission (discussed later)

CSM Vehicle Coordinate System

- Rotating coordinate system, fixed to CSM body
- Origin along vehicle centerline, 25.4 m (1000 in) behind Command Module (CM) heat shield
- Axes:
- +X "forward" along longitudinal axis

CSM Vehicle Coordinate System

- Rotating coordinate system, fixed to CSM body
- Origin along vehicle centerline, 25.4 m (1000 in) behind Command Module (CM) heat shield
- Axes:
- +X "forward" along longitudinal axis
- +Z "down" along crew's feet when in couches

CSM Vehicle Coordinate System

- Rotating coordinate system, fixed to CSM body
- Origin along vehicle centerline, 25.4 m (1000 in) behind Command Module (CM) heat shield
- Axes:
- +X "forward" along longitudinal axis
- +Z "down" along crew's feet when in couches
- +Y "starboard" completed right-handed system

LM Vehicle Coordinate System

- Rotating coordinate system, fixed to LM body
- Origin along vehicle centerline, 5.08 m (200 in) below LM ascent stage base
- Axes:
$-+X$ "up" through top hatch

LM Vehicle Coordinate System

- Rotating coordinate system, fixed to LM body
- Origin along vehicle centerline, 5.08 m (200 in) below LM ascent stage base
- Axes:
- +X "up" through top hatch
- +Z "forward" through egress hatch

LM Vehicle Coordinate System

- Rotating coordinate system, fixed to LM body
- Origin along vehicle centerline, 5.08 m (200 in) below LM ascent stage base
- Axes:
- +X "up" through top hatch
- +Z "forward" through egress hatch
- +Y "starboard" completed right-handed system

CSM/ LM Body Coordinate Systems

- Axes parallel to vehicle coordinate system
- Origin at vehicle center of mass

Navigation Base Coordinate System

- Rotating coordinate system, fixed to navigation base
- IMU gimbal angles define the transformation between stable member coordinates and nav base coordinates
- Origin at center of navigation base
- Axes parallel to vehicle body axes

Earth-fixed Coordinate System

- Rotating coordinate system, fixed to Earth
- All Earth landmarks, including launch site vector, referenced to this system
- Origin at center of Earth
- Axes:
- +Z along true north pole

Earth-fixed Coordinate System

- Rotating coordinate system, fixed to Earth
- All Earth landmarks, including launch site vector, referenced to this system
- Origin at center of Earth
- Axes:
- +Z along true north pole
- +X along true Greenwich meridian at equator

Earth-fixed Coordinate System

- Rotating coordinate system, fixed to Earth
- All Earth landmarks, including launch site vector, referenced to this system
- Origin at center of Earth
- Axes:
- +Z along true north pole
- +X along true Greenwich meridian at equator
$-+Y$ in equatorial plane, completed right-handed system

Moon-fixed Coordinate System

- Rotating coordinate system, fixed to moon
- All lunar landmarks, including landing site vector, referenced to this system
- Origin at center of moon
- Axes:
- +Z along true north pole

Moon as viewed from Earth

Moon-fixed Coordinate System

- Rotating coordinate system, fixed to moon
- All lunar landmarks, including landing site vector, referenced to this system
- Origin at center of moon
- Axes:
- +Z along true north pole
- +X along zero longitude at equator (center of moon visible disc)

Moon as viewed from Earth

Moon-fixed Coordinate System

- Rotating coordinate system, fixed to moon
- All lunar landmarks, including landing site vector, referenced to this system
- Origin at center of moon
- Axes:
$-\quad+Z$ along true north pole
- +X along zero longitude at equator (center of moon visible disc)
$-\quad+$ Y completed right-handed system ("trailing" moon in its orbit around the Earth)

Moon as viewed from Earth

Objectives

- Review basic navigation concepts
- Describe coordinate systems
- Identify attitude determination techniques
- Prime: PGNCS IMU Management
- Backup: CSM SCS/LM AGS Attitude Management
- Identify state vector determination techniques
- Prime: PGNCS Coasting Flight Navigation
- Prime: PGNCS Powered Flight Navigation
- Backup: LM AGS Navigation

PGNCS I MU Management

- Apollo used three-gimbal IMU
- Lighter and less complex than fourgimbal IMU, but vulnerable to gimbal lock when all three gimbals in same plane
- Spacecraft attitudes operationally constrained to avoid gimbal lock
- Apollo Flight Director Attitude Indicator (FDAI) driven directly by IMU gimbal angles rather than computer
- Allowed IMU to operate independently of computer
- Allowed gimbal lock region to be graphically depicted as red circles on FDAI ball
- Periodic IMU aligns to different REFSMMATs required to:
- Accommodate variety of mission attitudes while avoiding gimbal lock
- Provide meaningful FDAI attitude display to crew

Common REFSMMATs

- Preferred
- Nominal (LVLH)
- Launch Pad (CSM only)
- Landing Site
- Liftoff
- Passive Thermal Control (PTC)
- Entry (CM only)

Preferred REFSMMAT

- Used for major burns
- +X aligned with ΔV vector at Time of Ignition (TIG)

Preferred REFSMMAT

- Used for major burns
- +X aligned with ΔV vector at Time of Ignition (TIG)
- +Y perpendicular to both ΔV vector and position vector at TIG
- Direction could be defined to provide either "headsup" or "heads-down" burn attitude

Preferred REFSMMAT

- Used for major burns
- +X aligned with ΔV vector at Time of Ignition (TIG)
- +Y perpendicular to both $\Delta \mathrm{V}$ vector and position vector at TIG
- Direction could be defined to provide either "headsup" or "heads-down" burn attitude
- +Z completed right handed system
- FDAI read 0,0,0 when in burn attitude at TIG

Nominal REFSMMAT

- Aligned with Local Vertical/Local Horizontal (LVLH) coordinates at time of alignment
- Used for coasting orbital flight
- $\quad+Z$ aligned with radius vector (+Rbar) at time of align

Nominal REFSMMAT

- Aligned with Local Vertical/Local Horizontal (LVLH) coordinates at time of alignment
- Used for coasting orbital flight
- +Z aligned with radius vector (+Rbar) at time of align
- $\quad+Y$ aligned with negative orbital momentum vector (-Hbar) at time of align

Nominal REFSMMAT

- Aligned with Local Vertical/Local Horizontal (LVLH) coordinates at time of alignment
- Used for coasting orbital flight
- $\quad+Z$ aligned with radius vector (+Rbar) at time of align
- +Y aligned with negative orbital momentum vector (-Hbar) at time of align
- $\quad+X$ in orbit plane in direction of velocity (+Vbar)
- FDAI read 0,0,0 when in "airplane attitude" at time of align
- Note that this was an inertial orientation aligned with LVLH only at one point in time
- Inertial pitch angle diverged from LVLH pitch angle at orbital rate
- Crew used Orbital Rate Display - Earth and Lunar (ORDEAL) to bias FDAI pitch angle to display LVLH attitude

Launch Pad REFSMMAT

- CSM only
- +Z aligned with radius vector (+Rbar) at liftoff time

Launch Pad REFSMMAT

- CSM only
- +Z aligned with radius vector (+Rbar) at liftoff time
- +X aligned with flight azimuth at liftoff time

Launch Pad REFSMMAT

- CSM only
- +Z aligned with radius vector (+Rbar) at liftoff time
- +X aligned with flight azimuth at liftoff time
- +Y completed righthanded system
- At liftoff, FDAI read pitch 90, yaw 0, roll 90 plus flight azimuth

Landing Site and Liftoff REFSMMATs

- +X aligned with position vector at planned landing time

Landing Site and Liftoff REFSMMATs

- +X aligned with position vector at planned landing time
- +Z pointed "forward" (parallel to CSM orbit plane)

Landing Site and Liftoff REFSMMATs

- +X aligned with position vector at planned landing time
- +Z pointed "forward" (parallel to CSM orbit plane)
- +Y completed righthanded system
- LM FDAI read 0,0,0 at landing
- Liftoff REFSMMAT identical except defined at planned lunar liftoff time

PTC REFSMMAT

- Used for passive thermal control ("barbecue roll") during translunar/transearth coast
- +X in ecliptic plane perpendicular to Earth-moon line

PTC REFSMMAT

- Used for passive thermal control ("barbecue roll") during translunar/transearth coast
- +X in ecliptic plane perpendicular to Earth-moon line
- +Z perpendicular to ecliptic plane directed south

PTC REFSMMAT

- Used for passive thermal control ("barbecue roll") during translunar/transearth coast
- +X in ecliptic plane perpendicular to Earth-moon line
- +Z perpendicular to ecliptic plane directed south
- +Y completed right-handed system

PTC REFSMMAT

- Used for passive thermal control ("barbecue roll") during translunar/transearth coast
- $+X$ in ecliptic plane perpendicular to Earth-moon line
- +Z perpendicular to ecliptic plane directed south
- +Y completed right-handed system
- PTC roll initiated from 90 deg pitch attitude to place CSM/LM stack perpendicular to ecliptic (and hence, line of sight to sun)

Entry REFSMMAT

- Aligned with LVLH at predicted time of Entry Interface (EI), 122 km (400 kft) altitude
- FDAI read pitch 180, 0, 0 in heads-down heatshield forward attitude at El
- Note that nominal El attitude pitched 20 degrees above local horizontal

I MU Alignment Techniques

- Two vectors required to uniquely define orientation of one frame with respect to another
- First vector fixes a line of sight (LOS) but leaves one degree of freedom (rotation about LOS)

I MU Alignment Techniques

- Two vectors required to uniquely define orientation of one frame with respect to another
- First vector fixes a line of sight (LOS) but leaves one degree of freedom (rotation about LOS)
- Second vector fixes rotation about LOS

CSM I MU Alignment

- Crew marked on two stars (or other known celestial bodies) using the sextant (SXT) or scanning telescope (SCT)
- Auto optics modes allowed SXT/SCT shaft and trunnion to be pointed directly at stars selected by the computer
- Manual optics modes allowed tweaking of SXT/SCT shaft/trunnion using optics controller
- Minimum Impulse Controller (MIC) could be used to tweak CSM attitude
- Crewman Optical Alignment Sight (COAS) could be used as backup alignment device if optics failed
- Not attached to navigation base calibration required prior to use

LM Docked I MU Alignment

- Initial coarse alignment used CM gimbal angles
- Docking mechanism did not tightly constrain relative roll
- Crew recorded docking angle $\left(R_{c}\right)$ from index marks on tunnel during initial LM activation
- Required LM gimbal angles computed manually from CM gimbal angles as follows:

$$
\begin{aligned}
& \mathrm{OGA}_{L M}=300^{\circ}+\mathrm{R}_{\mathrm{C}}-\mathrm{OGA} \\
& \mathrm{CM} \\
& \mathrm{GA}_{\mathrm{LM}}=180^{\circ}+\mathrm{IGA} \\
& \mathrm{MGA}_{\mathrm{LM}}=360^{\circ}-\mathrm{MGA}_{\mathrm{CM}}
\end{aligned}
$$

LM Orbital I MU Alignment

- Crew marked on two stars (or other known celestial bodies) using the alignment optical telescope (AOT)
- AOT had six detent positions; however, only forward position could be used while docked to CSM
- Rendezvous Radar (RR) antenna required to be positioned out of AOT field-of-view
- Crew entered detent position code and star code manually into computer
- COAS could be used as backup (same calibration restrictions as CSM)

LM AOT Usage

- X-line and Y-line on AOT reticle used for in-flight alignment
- Crew allowed star to drift across AOT field-of-view

LM AOT Usage

- X-line and Y-line on AOT reticle used for in-flight alignment
- Crew allowed star to drift across AOT field-of-view
- Crew pressed [MARK Y] when star crossed Y-line

LM AOT Usage

- X-line and Y-line on AOT reticle used for in-flight alignment
- Crew allowed star to drift across AOT field-of-view
- Crew pressed [MARK Y] when star crossed Y-line
- Crew pressed [MARK X] when star crossed X-line
- Marks could be taken in either order
- Crew pressed [MARK REJECT] if bad mark

LM Lunar Surface I MU Alignment

- Not always possible to sight on two stars while on surface

LM Lunar Surface I MU Alignment

- Not always possible to sight on two stars while on surface
- For first surface alignment, local gravity vector (as measured by IMU accelerometers) could be substituted for one of the star sightings

LM Lunar Surface I MU Alignment

- Not always possible to sight on two stars while on surface
- For first surface alignment, local gravity vector (as measured by IMU accelerometers) could be substituted for one of the star sightings
- Present orientation of LM Y and Z axes stored in moonfixed coordinates at conclusion of each alignment

LM Lunar Surface I MU Alignment

- Not always possible to sight on two stars while on surface
- For first surface alignment, local gravity vector (as measured by IMU accelerometers) could be substituted for one of the star sightings
- Present orientation of LM Y and Z axes stored in moonfixed coordinates at conclusion of each alignment
- For second and subsequent alignments, could use either gravity vector and present Z axis, or present Y and Z axes

LM AOT Surface Usage

- Stars may never cross AOT X or Y lines while on surface
- LM in fixed attitude
- Moon rotates very slowly
- Different marking technique required
- AOT reticle had two additional markings
- Radial "cursor"
- Archimedean "spiral" (radius increases linearly with angle)
- AOT reticle rotated to allow cursor or spiral to be superimposed on star
- Reticle angle displayed on counter, manually entered via DSKY

LM AOT Surface Usage

- Stars may never cross AOT X or Y lines while on surface
- LM in fixed attitude
- Moon rotates very slowly
- Different marking technique required
- AOT reticle had two additional markings
- Radial "cursor"
- Archimedean "spiral" (radius increases linearly with angle)
- AOT reticle rotated to allow cursor or spiral to be superimposed on star
- Reticle angle displayed on counter, manually entered via DSKY

LM AOT Surface Usage

- Stars may never cross AOT X or Y lines while on surface
- LM in fixed attitude
- Moon rotates very slowly
- Different marking technique required
- AOT reticle had two additional markings
- Radial "cursor"
- Archimedean "spiral" (radius increases linearly with angle)
- AOT reticle rotated to allow cursor or spiral to be superimposed on star
- Angle displayed on counter, manually entered via DSKY

CSM SCS Attitude Management

- Stabilization and Control System (SCS) served as backup control system for the Primary Guidance, Navigation, and Control System (PGNCS)
- Attitude reference provided by two Gyro Assemblies (GAs), each of which contained three Body Mounted Attitude Gyros (BMAGs)
- GA2 BMAGs measure attitude rate
- GA1 BMAGs nominally measure attitude change from reference attitude but could be configured to measure rates as backup to GA2

CSM SCS Attitude Management

- Gyro Display Coupler (GDC) combined GA1 attitude difference with reference attitude to produce total attitude for display to crew
- Reference attitude set to current IMU attitude on Attitude Set Control Panel (ASCP), then GDC aligned to reference
- BMAGs were more "drifty" than IMU

LM AGS Attitude Management

- Abort Sensor Assembly (ASA) was strapdown inertial navigation system for the Abort Guidance System (AGS)
- AGS had access to PGNS downlist data via telemetry link
- Crew had capability to command AGS to align ASA to IMU
- AGS could also calibrate ASA gyro/accelerometer biases using IMU as reference

Objectives

- Review basic navigation concepts
- Describe coordinate systems
- Identify attitude determination techniques
- Prime: PGNCS IMU Management
- Backup: CSM SCS/LM AGS Attitude Management
- Identify state vector determination techniques
- Prime: PGNCS Coasting Flight Navigation
- Prime: PGNCS Powered Flight Navigation
- Backup: LM AGS Navigation

Coasting I ntegration

- Encke's Method
- Use current state vector and gravity of primary body to compute a reference conic

Coasting I ntegration

- Encke's Method
- Use current state vector and gravity of primary body to compute a reference conic
- Sum all other accelerations to propagate a position/velocity deviance from the reference conic

Coasting I ntegration

- Encke's Method
- Use current state vector and gravity of primary body to compute a reference conic
- Sum all other accelerations to propagate a position/velocity cleviance from the reference conic
- When deviances exceed threshold, compute new reference conic and zero the deviations (rectification)

Coasting I ntegration

- Compare to Cowell's Method (shuttle):
- Sum all accelerations on vehicle (including primary body gravity) and propagate directly to advance the state vector
- Cowell's advantage: simpler, brute-force algorithm
- Encke's advantages:
- Maintains more precision at larger stepsizes
- More suitable for slow computers with limited precision (i.e. Apollo Guidance Computer)

Perturbing Accelerations

- Depended on phase of mission
- Earth or lunar orbit: non-spherical gravity of primary body (up to fourth order terms)
- Translunar/transearth coast: Earth, lunar, and solar gravity (spherical terms only)
- No drag
- No IMU acceleration

Measurement I ncorporation

- Several different programs available, not all on both vehicles
- MCC prime for most forms of navigation; onboard capability intended as loss-ofcomm backup

Program	CSM	LM	Prime
Rendezvous	$\sqrt{ }$	$\sqrt{ }$	Onboard
Orbital	$\sqrt{ }$		MCC
Cislunar- midcourse		MCC	
Lunar Surface	$\sqrt{ }$	MCC	

LM Rendezvous Navigation

- The state vectors for both vehicles are propagated to the current time

LM Rendezvous Navigation


```
RR Tracking Q \
Measurement
```

- The LM RR takes a measurement (range, range rate, shaft, or trunnion angle) of the CSM

LM Rendezvous Navigation

- The navigation software computes an estimate of the RR measurement based on the current state vectors, and a measurement geometry vector
- The navigation software computes the difference (residual) between the actual RR measurement and the estimated measurement

LM Rendezvous Navigation

- The navigation software computes a weighting vector based on the current states, the measurement geometry vector, and predefined sensor variances

LM Rendezvous Navigation

- The navigation software computes an update to the state vector and the estimated RR biases using the weighting vector and the measurement residual

LM Rendezvous Navigation

- The state vector update is tested against a predefined threshold
- If the test passes, the state vector and RR biases are updated
- Otherwise, alarm annunciated and crew either accepts or rejects the update

LM Rendezvous Navigation

- State vector update can be applied to either vehicle (usually the active vehicle, LM)
- If CSM performs maneuver, maneuver ΔV should be externally applied to CSM vector in the LM to prevent excessive RR updates and improve state vector convergence

If it quacks like one...

- Apollo navigation software initial development by Battin was concurrent with (and independent of) Kalman's work on recursive estimators (later named Kalman filters)
- Early Apollo documents didn't use Kalman's nomenclature
- Battin discovered Kalman's work during development
- Apollo navigation software contained several simplifications/differences from "orthodox" Kalman filter
- W-matrix instead of error covariance matrix
- Square root of covariance: $[E]=[W][W]^{\top}$
- Eliminating negative numbers from matrix improved convergence
- One measurement incorporation at a time
- Reduced a lot of matrix-vector math to vector-scalar math
- Measurement edit test used state vector update rather than ratio
- Ratio test incorporates covariance, becomes more stringent as state vector converges

CSM Rendezvous Navigation

- CSM rendezvous measurements are performed using VHF (range) and SXT (shaft and trunnion angles)
- Sensor biases are not propagated

LM Lunar Surface Navigation

- The LM vehicle state is stored in Moon-Fixed Coordinates and updated by transforming to inertial coordinates
- The CSM state vector is updated using LM RR data
- Only RR range and range rate are incorporated, not angles
- RR biases are not propagated

CSM Orbital Navigation

- Only the CSM state vector is propagated
- Measurements are SCT shaft and trunnion angles on a landmark on the Earth or lunar surface
- All updates must be accepted or rejected by the crew
- Landmark may be known (update CSM state vector) or unknown (update landmark position)
- Sensor biases are not propagated

CSM Cislunar-Midcourse Navigation

- All updates must be accepted or rejected by the crew
- Sensor biases are not propagated

Powered Flight Navigation

- Both CSM and LM used Average-G algorithm for state vector propagation during powered flight
- Used IMU accumulated $\Delta \mathrm{V}$ over one guidance cycle (2 seconds)
- Used average gravitational acceleration over one cycle, primary body only
- Earth gravity model: spherical and J2 (equatorial bulge) terms only
- Lunar gravity model: spherical term only
- Estimated vehicle mass updated based on IMU sensed ΔV
- No measurement incorporation for CSM
- LM Average-G incorporated Landing Radar (LR) measurements only
- Slant range data available starting at $12.2 \mathrm{~km}(40 \mathrm{kft})$ altitude
- Velocity data available starting at 10.6 km (35 kft) altitude
- Both range and velocity subjected to simple independent reasonableness checks
- All data inhibited at 15.2 m (50 ft) altitude
- LM state vector propagated in Stable Member coordinates (rather than Basic Reference coordinates) during powered descent, ascent, and aborts
- Since IMU aligned to landing/liftoff REFSMMAT, sometimes referred to as landing site coordinates
- Average-G output transformed back to BRCS for downlink

LM AGS Navigation

- AGS state vectors initialized from PGNS telemetry link upon crew command
- AGS state vectors could also be initialized via manual keyboard entries of vectors voiced up from MCC
- AGS propagated CSM/LM state vectors from last initialized data using acceleration data from ASA
- If LM under PGNS control, AGS acquired rendezvous radar (RR) data (range, range rate, and angles) automatically from PGNS
- If LM under AGS control, AGS acquired rendezvous radar data via manual DEDA entries
- Range and range rate only
- Crew manually pointed LM +Z axis at CSM to zero RR angles

Summary

- Review of Basic Navigation Concepts
- Coordinate Systems
- Attitude Determination
- Prime: PGNCS IMU Management
- Backup: CSM SCS/LM AGS Attitude Management
- State Vector Determination
- Prime: PGNCS Coasting Flight Navigation
- Prime: PGNCS Powered Flight Navigation
- Backup: LM AGS Navigation

References

- Apollo Operations Handbook, Block II Spacecraft, Volume I: Spacecraft Description. SM2A-03Block II-(1), 15 January 1970.
- Apollo Operations Handbook, Lunar Module, LM 10 and Subsequent, Volume I: Subsystems Data. LMA790-3-LM 10, 1 April 1971.
- Guidance System Operations Plan for Manned LM Earth Orbital and Lunar Missions using Program Luminary 1C (LM131 rev. 1), Section 5: Guidance Equations (rev. 8). MIT Charles Stark Draper Laboratory R-567, April 1970.
- Guidance System Operations Plan for Manned CM Earth Orbital and Lunar Missions using Program Colossus 3, Section 5: Guidance Equations (rev. 14). MIT Charles Stark Draper Laboratory R-577, March 1971.
- Space Navigation Guidance and Control, Volume 1 of 2. MIT Instrumentation Laboratory R-500, June 1965.
- Apollo 15 Program Description. Delco Electronics, 1971.
- Project Apollo Coordinate System Standards. NASA SE 008-001-1, June 1965.
- Apollo Training: Guidance and Control Systems - Block II S/C 101, 15 September 1967.
- Apollo Experience Report - Guidance and Control Systems. NASA TN D-8249, June 1976.
- Apollo Experience Report - Onboard Navigational and Alignment Software. NASA TN D-6741, March 1972.
- Apollo Experience Report: Very-High-Frequency Ranging System. NASA TN D-6851, June 1972.
- Apollo Experience Report - Guidance and Control Systems: Orbital-Rate Drive Electronics for the Apollo Command Module and Lunar Module. NASA TN D-7784, September 1974.
- Apollo Guidance Computer History Project, Interview with R. Battin, MIT, 30 September 2002 (http://authors.library.caltech.edu/5456/01/hrst.mit.edu/hrs/apollo/public/interviews/battin.htm).

