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This text is a translation from French of a book on aerial propeller design for-
mulated during the earliest period of aviation development. The author, Stefan
Drzewiecki, was an eminent engineer who contributed to the Blade Element The-
ory of propeller design. According to wikipedia.org he is credited with designs
for submarines, torpedo launching systems and methods of developing airplane
and marine propellers from 1880 onward. His later book "Theory Générale de
Hélice" (1920) was honored by the French Academy of Science as fundamental
in the development of modern propellers.

I was curious about the unusual design of M. Drzewiecki’s "Hélice Normale"
propeller used on some pioneer aircraft. I found short descriptions of the design
in French books and magazines, and a reference to this text. I could not find an
online copy of the book in Google Books, Hathi Trust, Gallica or other online
archives. The book is held in a few libraries around the world including the
Huntington Library, in San Marino, California. Thanks to the librarians at the
Huntington I was allowed an independent scholar pass to examine the book and
photograph the pages.

The images from the book were converted to text using Ocropus, an open
source document analysis and OCR system, and page dewarping code from Lep-
tonica, an image processing and analysis library. After corrections to the OCR
putput the text was translated to English using the Google Chrome translator
feature. Since I have no knoweldge of French I have not attempted to improve
on this machine translation. The PDF file was typeset in a format similar to
the original using Lyx, a Latex front-end for the Mac. This project was not
my original intent when I went to the library and in spite of the shortcomings
of my images and the machine translation I hope someone interested in early
aviation design will find the ideas and the 19th century approach to engineering
described in this book interesting.
Ken Rector



AERIAL PROPELLERS

The question of propellers in general is very complex and not very well known
from a theoretical point of view.

If, for marine propellers, we are, in spite of that, to achieve satisfactory uses,
it is only through the accumulation of many experiments, long gropings, tests
and successive modifications, often due to chance, in a word, to a practice of
three quarters of a century. Also, for the calculation and sketching of the dif-
ferent elements of these propellers, we use, for the most part, isolated empirical
methods and formulas, having no general connection between them, denoting a
general conception of phenomenon. These practical processes and these formu-
las constitute, so to speak, traditions of workshops and personal recipes, varying
with the builders and their countries. This method, however imperfect it may
appear, was however, admissible when it came to what was known of marine
propellers, for a boat fitted with a propeller, even a defective one, could still
sail; though it was advancing slowly, consuming a great deal of coal, but the
bad performance of the propeller did not prevent the boat from sailing.

It is not the same for the aerial propeller intended to propel an airplane,
because, for want of a good propeller, an airplane can not be moved at all.
Indeed, materials which enter into the construction of an airplane, and the
laws of the resistance of these materials, constitute, for the airplane, special
conditions which put it, so to speak, upon the imitates of posssble. Therefore,
the use of all the elements of the apparatus, such as lift, engine and thruster,
should be as high as possible, both in terms of weight and power. If only one of
these elements does not meet these conditions of good use, the airplane might
not leave the ground. Moreover, for the aerial propellers we do not have,
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as for the marine propellers, the accumulation of experiments, empirical data,
coefficients, etc., provided by a long practice. That is why, for the calculation
of aerial thrusters, it will be indispensable for us to form an exact mechanical
conception of the operation of the propeller itself. In a word, we will have to
know the general theory of the propeller and have a rigorous method to calculate
all its elements without exception .

In 1892, I presented to the Maritime Technical Association a note in which I
proposed a method of calculating and determining all the elements of the helical
thrusters. Encouraged by the benevolent welcome my ideas have received from
eminent naval engineers and distinguished scientists, I sought the verification
of my theory by calculating, according to it, a large number of existing and
tried propellers. I had the satisfaction of seeing that the predictions of my
calculations were always in agreement with reality, and that the good propellers
were precisely those which were nearest to the type indicated by the calculation.
In addition, I found that certain peculiarities observed in the operation of the
propellers, which could not be explained by ordinary methods, were deduced,
in a simple and rational way, when considered from the point of view of my
theory. Finally, this theory also gave the logical explanation of certain empirical
formulas used successfully in practice. Since. a very large number of propellers
have been constructed, calculated by the method I have proposed, and the
results have always been consistent with the calculations. All these reasons now
give me the right to consider the principles of this theory as perfectly correct.
We will therefore try to apply them also to the calculation of aerial propellers .
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Consider a point O (fig 1) located on a rigid radius, fixed perpendicular to
an axis XX rotating jointly with he, at a uniform speed of N turns per second;
suppose at the same time that the axis XX itself is animated by a movement
translation in the direction of its length, with a speed uniform V.

Because of the rotation around the axis XX, the point O will be animated,
in the direction OY, at a peripheral speed which will be expressed by 2⇡N⇢, ⇢
being the distance from the point O to the axis of rotation XX. On the other
hand, because of the longitudinal advancement of the axis of rotation itself, the
point O will also have a velocity V in the direction parallel to the axis XX.
The actual velocity of the point O will be the resultant of the two velocities
2⇡N⇢ and V. It will therefore be represented, in magnitude and in direction,
by OT, a diagonal of the rectangle, whose sides are respectively 2⇡N⇢ and V.
This diagonal will also represent the tangent to the real trajectory followed by
the point O; the helical line resulting from the winding of the diagonal OT on
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the cylindrical surface, whose axis would be XX, and radius ⇢, The pitch of

this helical line would be
V

N
, which also represents the advance per revolution.

Calling � the angle this tangent OT makes with the generator of the cylinder
projected at XX, we have:

tang� =
2⇡N⇢

V
and 2⇡N⇢ = V.tang�

If the movement of the point O takes place in a fluid at rest, the velocity of
the point O with respect to the fluid will be directed along OT, or, what is the
same, the fluid threads will meet the point O in the direction TO.

Fix, at the point O on the radius ⇢, a plane element passing through this
radius, and projecting onto the XY plane following AB. Moreover, let us orient
this element so that it makes with the direction OT an angle ↵, within the angle
�, so that the angle of the plane element with the X axis is (�-↵).

When the element AB will be dragged into the motion of the point O, along
the helical path OT all the points of the element AB will meet the fluid threads
in directions parallel to OT and consequently under an incidence ↵.

Aerodynamics teaches us that under these conditions the plane element will
experience, from a fluid encountered, a certain resistance, the direction which
is, for the moment, unknown. This resistance will be proportional to the extent
of the surface, the square of the velocity and very approximately to the sine of
the angle of incidence. It will be expressed by the formula R = K.S.W 2.sin↵,
where K is an empirical coefficient, and W is the velocity of the element in the
fluid at rest, This resistance can always be represented by its two components;
one P, directed perpendicular to the tangent to the trajectory, and which we
shall call the useful thrust, and the other f , directed along OT, but in the
opposite direction, and which will represent the harmful resistance. Whatever
the direction of resistance and the numerical values of these two forces P and
f , they can always be connected by a relation such that f = µ, P where µ is a
constant coefficient independent of the velocity, since ƒ and P are the components
of the same resistance, and vary both at the same time, and in the same way,
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proportionally to the square of the velocity.
The two components being in a plane parallel to the XY plane, their projec-

tions on the Z axis will be zero, while their respective projections on the X and
Y axes will be:
for the X:

+Op and �Os

and for the Y:

�Oq and �Ot

Expressing these projections as functions of P, µ and �,
we have:

Op = Psin�

Os = fcos� = µPcos�

Oq = Pcos�

Ot = fsin� = µPsin�

The algebraic sum of these projections on the X axis will be:

Op�Os = P (sin� � µcos�)

and on the Y axis:

� (Oq +Ot) = �P (cos� + µsin�)

If we consider the system as an elementary thruster powered by a motor
which develops a motor torque F , intended to balance the running resistance
�R of the whole system, in the direction of the axis XX, we can pose:

�R+ P (sin� � µcos�) = 0

and as this resistance R, occurs at the speed V, we can deduce the value of the
useful power, or the useful work per second, by multiplying the resistance by
the speed.

⇣u = RV = PV (sin� � µcos�)

Similarly, the following component OY will constitute at the distance ⇢ of the
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axis of rotation, a torque that will balance the motor torque F, we will have:

F⇢� P⇢(cos� + µsin�) = 0

and multiplying by 2⇡N, which is the tangential velocity of the engine torque,
we will have the motive power, or the motor work per second:

⇣m = 2⇡N⇢F = 2⇡N⇢P (cos� + µsin�),

but, as we have seen:

2⇡N⇢ = V tang�

we have:

⇣m = PV (cos� + µsin�)tang�

By dividing the expression of the useful power ⇣u, by that of the motive
power ⇣m, we will have the utilization coefficient K, of this elementary thruster.
It will be:

K =
⇣u
⇣m

=
sin� � µcos�

(cos� + µsin�)tang�

dividing the numerator and the denominator by cos�, we have:

K =
tang� � µ

(1 + µtang�)tang�

which determines the value of the use of the different elements of a thruster, for
different values of tang �.

By giving µ the form

µ = tang(arctangµ)

the expression of K becomes, after simplification
********** missing lines *************
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If the friction and the resistance due to the thickness of the element AB
did not exist and the ratio µ =

f

P
was reduced to tang↵, the use K would be

expressed by:

K =
tang(� � ↵)

tang�

This shows that this use would be larger as the angle ↵ would be smaller,
and that K would become equal to unity for ↵ = 0.

Let us take the general expression of K:

K =
tang� � µ

(1 + µtang�)tang�

we see that, for values of tang � less than µ, the coefficient K is negative; that
it is zero for tang� = µ, and that, for increasing values of tang�, it increases,
passes by a maximum and then decreases until 0, when tang� tends to infinity.

To determine the value of tang�, which makes maximum the value of K,
equal to zero the first derivative of the expression; after simplification we find:

tang2� � 2µtang� � 1 = 0

Solving this equation and taking only the positive value of tang�, we find
that the value of tang�M , which makes K maximum, is:

tang�M = µ+
p
µ2 + 1

Substituting this value in the expression of K, we find for the value maximum
of KM :

KM =
1

⇣
µ+

p
µ2 + 1

⌘2

The denominator is precisely the square of tang�M , so:

KM =
1

tang�M

As the coefficient K approaches unity, the value of tang2�M should be close to
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1, and therefore also tang�M itself; this shows that the maximum efficiency of
the thruster will correspond to that part of the neighboring wing tang� = 1,
which gives � = 45˚. This part is near the base of the wing. This proves that
it is not the end of the wing, as is generally believed, but its base, which is the
part of the thruster giving the best use.

Let us draw the curve of the values of KM , by varying µ from 0 to 1, by
increases of 0.1 (fig. 2). The ordinates of this curve are entered in the table
below (Table A) below the corresponding values of µ and the corresponding
values ↵. We see that KM decreases very rapidly with the increase of µ and
that it is, there-fore, extremely important for the thrusters, as µ, and hence also
↵, are as small as possible.
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The value of µ consists of two parts: the first, and the most important,
depends on the incidence, since µ is proportional to tang↵; the second part of
the resistance is due to the friction of the fluid on the surface of the propeller
element and to the section of this element. This second part of the resistance is
very small compared to the first; it depends on the greater or lesser thickness of
the wing and the state of its surface, so it is independent of ↵ and constant for
the same wing at all angles. The values of these two parts of µ for increasing
values from µ = 0.05 to µ = 1, adopting for µ the form µ = tang↵+0.018. This
value, which we have attributed to the part of the resistance due to the friction
and thickness of the element under consideration, is evidently a little arbitrary,
but we have no positive data to deduce it. It is only in an aerodynamic test
laboratory that it would be possible to determine it accurately. In any case
the error must not be considerable, and the values of the angle of incidence ↵
entered in the last line of Table A must not differ significantly from reality.

At inspection of the table we see that to obtain, for a helical propeller, an



10

advantageous yield, it is necessary that its elements attack the air at the lowest
possible incidence. We will see however that there is a limit for ↵, below which
it is no longer advantageous to descend.

To demonstrate this, graphically represent the increasing values of P and ƒ
taking as the abscissa the increasing values of the incidences from ↵ = 0˚ to ↵
= 90˚ .

The curve, whose ordinates represent the values of P (fig. 3 ), corresponding
to those of ↵, starts at zero, since for ↵ = 0˚ the value of P is zero, then it
goes up to a maximum, which corresponds to approximately 27˚ or 30˚, then
goes down gradually to 0, when ↵ reaches 90˚; at this moment the force P,
perpendicular to the trajectory, vanishes.

Similarly draw (fig 4) the curve of the values of ƒ, for increasing values of ↵
we see that for ↵ = 0˚, ƒ is represented by a certain value, which depends on
the friction and the thickness of the moving element. This value is very small,
but it is measurable. By increasing the values of ↵ from 0˚ to 90˚, those of
ƒ also increase to a maximum corresponding to ↵ = 90˚. Draw a third curve
(fig. 5). always taking for the abscissae the increasing values of ↵ from 0˚

to 90˚, and for ordinates the corresponding values of µ=
f

P
, which represents
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the ratio of the ordinates of the curve f (fig. 4) to the corresponding ordinates
of the curve P (fig. 3). We see that for ↵ = 0˚, µ is infinite since it is the
quotient of the value of f0, a low but positive value, by the value of P0 which
is zero. The µ curve is therefore asymptotic to the Y axis; it drops rapidly to a
minimum value, which corresponds to a value of µ close to 2˚, and then returns
to become asymptotic again at an ordinate passing through ↵ = 90˚, since at

this moment µ =
f90
0

.

This minimum value for ↵, neighboring 2˚ was determined by us in an
earlier study from 1887, Therefore, based on the formulas of Duchemin, we
calculate the different impacts under which a square meter of the load-bearing
surface could hold a given weight in the air, advancing horizontally with a
determined speed; then we drew up a table, of eight columns, in which each
column corresponded to a bearing weight of 1,2,3 .... 8 kil. The horizontal
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lines of the table corresponded to the incidences required to carry the weights
in question, at speeds increased from 5, 10, 15 .... to 30 meters per second;
these incidences were evidently decreasing in each of the eight columns. We
have calculated, in the same manner and under the same conditions, a second
table in which were ranked the power required to advance the square meter,
successively loaded increasing weights of 1 to 8 kil., and meeting the air under
the decreasing incidences, determined above, and with increasing velocities of
5 to 30 meters. The two tables were absolutely similar, so that each value
of one table corresponded to the similar value of the other. In examining the
table of motor powers, it was found that, in each column, the power passed
through a minimum, and it was found that this minimum corresponded, in the
first table, for all the speeds and for all the weight carried, always at the same
incidence very close to 2 °. By interpolating, we found more exactly ↵ = 1˚500.
It is at this angle that we gave the name of optimal incidence. The numerical
value of the optimal incidence, thus found, obviously depends on the coefficients
employed in the different formulas adopted, and its exact value can be rigorously
determined only by direct tests in an aerodynamic laboratory. For the moment,
in our later calculations, for want of more precise data, we will adopt this value
of ↵ = 1˚500, which seems, moreover, very close to what it really must be. For
water, we adopted ↵ = 3˚, which proved quite accurately in the calculation of
the marine propellers. The very strictness in the appreciation of the optimal
incidence is also of little importance, a slight difference in one direction or the
other will not influence in a very significant way the performance of the propeller,
provided that the gap is not too big.

By the foregoing, we see that, in the aerial propellers, it is advantageous
to dispose the elements constituting the surface of the propeller, so that they
meet the fluid threads under a very small and constant incidence, the optimal
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incidence ↵ = 1˚500, and that, under these conditions, the use of the thruster
is maximum.

Let us see now how we are going to arrange these elements along the radius
⇢, and if it is not necessary to take on this radius a determined length between
certain limits. For that, let us take the expression

K =
tang� � µ

(1 + µtang�)tang�

Let us draw a first curve taking the increasing values of tang� for abscissae
and assigning to µ a given value µ = 0.05; the ordinates of this curve will be
the corresponding values of K (fig.6).

We see that the curve is asymptotic to the axis of Y in its negative part, since
K = �1 for tang� = 0; the curve rises quickly to cut the X axis; K = 0 for
tang� = µ = 0.05. Then the curve rises rapidly to pass through a corresponding
maximum KM = 0.905, as we have seen, to tang�M = µ +

p
µ2 + 1 = 1.051,

after which, it gradually decreases, but slowly, to become asymptotic to the X
axis for tang� = 0.

In the table above (Table B), we have entered in the first horizontal row the
increasing values of tang� from tang� = 0.5 to tang �1 = 5. Below we have
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arranged the corresponding values of K, giving µ a value µ = 0.05. At the end
of this row, we

indicated the average values of K of said line; this average is K = 0.855. This
figure shows the average return that could be obtained with a helical propeller,
whose elements would attack the air under the optimum incidence and that
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would be placed along the radius ⇢ from ⇢0 = 0.5, until ⇢1 = 5.
We see that we do not have an interest in using the part of the thruster which

lies between the axis of rotation and the value ⇢ = 0.05, because the yields there
are very low, and even negative; also, the propulsive surface of the wing must
start from a radius corresponding to a value tang� equal to 0.5. Likewise, the
length of the wing must not exceed a value corresponding to tang � = 5, since
beyond this length, the values of K decrease appreciably, We will call r0, andr1
the radii that correspond to:

tang�0 = 0.5 and tang�1 = 5,

so that we can write:

r0 =
V

2⇡N
tang�0 = 0.5

V

2⇡N
,

and

r1 =
V

2⇡N
tang�1 = 5

V

2⇡N
.

The expression
V

N
is, what is called, the advance per turn of the thruster

and we will designate it by A =
V

N
; we will call Module the advance A, divided

by 2⇡, and we will designate it by:

M =
V

2⇡N
=

A

2⇡
.

This expression will play an important role in the following, and is why we
determine it now. By replacing in the expressions of r0, and r1, which define

the radius of the hub and that of the wing of the thruster,
V

2⇡N
. by the module

M, we will have:

r0 = 0.5M and r1 = 5M .

This shows that, for an average efficiency aircraft propeller wing, K = 0.855,
which we shall call the normal wing, the beginning of the wing will correspond
to a length of radius equal to half of the module, and the total length of the
wing will be equal to 5 modules.
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By examining the figures in the table above, one wonders why it would not
be enough to use only the part of the wing between the limits tang�0 = 0.5 and
tang �1 = 3 or 4 for example, for which the average yields would be higher; these
are indeed the limits which have been allowed for the normal wings of the marine
propellers, but for the aerial propellers these limits would be too limited, for
it is essential for the aerial thrusters to have a considerable propulsive surface;
moreover, as the shape of the wings will have to be also narrower, than that of
the marine propellers, by stopping the length of radius at 3 modules, or even
4, it would be necessary to give the propellers too many wings to make the
necessary propulsive surface. That is why we were led to adopt for the normal
wing in the air r1 = 5 M.

In practice, it may happen that this assumed length for the normal wing is
still insufficient, for example for propellers rotating very quickly, and for which
the advance per turn is low, as a result of which the module M will also be
very small; In order to avoid the use of too many wings, it will be necessary to
increase the value of r1 to 6, 7 and even 8 moduli, while on the contrary, rare
will be the case where the opportunity to go below r1 = 5 M.

In all that follows we will always call the normal wing, a propulsor wing
whose elements attack the air under the optimum incidence ↵ = 1˚5o0 and
whose wing lengths are determined by the relations:

r0 = 0.5M and r1 = 5M .

In the course of the present study we shall very frequently have occasion to
deal with the normal wing, which has been established on the basis of a certain
convention, as we have just seen. This convention has the immense advantage of
determining immediately and completely all the elements of the normal wing,
by means of the module only, and moreover, the conditions adopted in this
convention are very similar to those generally encountered in the practice of
aerial propellers, so that, in most cases, the standard of motion may be applied
as it is. without any modification.
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We have just seen that, for the normal wing, the average yield can reach the
value K = 0.0855 when µ = 0.05, but that it decreases rapidly with the increase
of µ.

To show in a striking way the rapid fall of the average coefficient of util-
lisation with the increase of µ, and consequently of the incidence ↵, we have
plotted the curves of these uses, and taking values of µ increasing by 0. 1, 0.2,
0.3, 0.4, and 0.5. We have grouped these curves in the same figure as the first
one, which corresponds to µ = 0.05 (fig. 6). In addition, the ordinates of these
curves have been entered in Table B next to the corresponding value of µ; in
the last column are ranked the average values of the use for each case.

One can easily realize the rapid fall of this average coefficient with the in-
crease of µ; the average coefficient which is 0.855 when µ = 0.05, falls to 0.323
for µ = 0.5. As it is the value of tang↵ which mainly influences that of µ, there
is a very great interest in arranging the wing so that the incidence is as small
as possible. It is never to be feared that this incidence is too small, even if it
is less than 1˚50’ because in this case, the propeller resistant torque becoming
lower than the expected engine torque, the engine will race; it will follow that
the number of turns of the propeller, being larger than normal, the advance per
turn will decrease, which will result in increasing the incidence, until it reaches
its value. The most useful is then that the engine torque will balance the re-
sistant torque. For a well calculated propeller. this equilibrium will be done
automatically for the optimal incidence.

In the foregoing, we have learned to determine the angle of attack and the
length of the wing needed to obtain the maximum efficiency of the thruster; we
saw that for this, it was necessary to arrange along the radius ⇢, between certain
limits *****missing lines here *****
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resulting from the juxtaposition of the elements AB along the radius ⇢, for
increasing values of tang�, is a helicoidal surface whose pitch is:

H =
2⇡⇢

tang(� � ↵)
,

but as:

tang(� � ↵) =
tang� � tang↵

1 + tang�tang↵
,

we have:

H =
2⇡⇢(1 + tang�tang↵)

tang� � tang↵
,

replacing 2⇡⇢ by its value:

V tang�

N
,

we get

H =
V (1 + tang�tang↵)tang�

N(tang� � tang↵)
.

Let us note in passing that, in this expression, the function which multiplies

the advance
V

N
, is precisely the opposite of that that we had found for K, and

in which µ would be replaced by tang↵; this shows that, if the friction did not
exist and that µ is reduced to tang↵, we would have:

H =
V

N
.
1

K
or:

K =
A

H

which shows that the performance would be measured by the ratio of advance
per pitch.

In examining the pitch value:

H =
V (1� tang�tang↵)tang�

N(tang� � tang↵)
,

we see that this pitch is a variable pitch; that he is infinite for tang� = tang↵,
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which occurs when � = ↵, in the neighborhood of the axis of rotation. As
tang� increases, the value of H decreases, it goes through a minimum that is
determined when the first derivative of the function equals zero; we find so after
simplification:

Hm =
V

N

⇣
tang↵+

p
tang2↵+ 1

⌘2

corresponding to a value of:

tang�m = tang↵+
p

tang2↵+ 1

For tang� = 1, the pitch becomes infinite again.
Here again the similarity of expression is striking between the minimum of

pitch Hm, and the inverse of the maximum yield KM , which we have deduced
above, In these two expressions it is the same value of tang� that makes, one the
minimum, the other maximum, with the only difference that tang↵ is replaced
by µ. The value of the minimum pitch can be expressed as a function of tang�m

that makes it minimum:

Hm =
V

N
.tang2�m,

but, as on the other hand:

Hm =
V

N
.

tang�m

tang (�m � ↵)
,

so:

tang2�m =
tang�m

tang (�m � ↵)
,

or:

tang�m.tang (�m � ↵) = 1.

We can deduce that tang�m is greater than unity exactly the same amount
as (tang�m � ↵) is less than 1, therefore:

�m = 45° +
↵

2
and �m � ↵ = 45° � ↵

2
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and since ↵ = 1˚50, we will have �M =45˚55’ and �M - ↵= 44˚5’.
Replacing both tang�mM and tang (�m�↵) by their numeric values, we

find;

Hm =
V

N

1.032

.994
= 1.038

V

N
and tang�m = 1.032

We see that the minimum pitch corresponds to a value of tang� very close
to the unit, it is therefore in the part of the wing which is inclined on the axis
of an angle a little higher at 45˚, more exactly at 45˚55”, which corresponds
to a length of radius ⇢ slightly greater than module; it is also the place of the
maximum yield.

For the drawing of marine propellers, a very convenient method is generaly
used which consists in carrying on the X axis, a length equal to the pitch divided
by 2⇡ and to lead, from the point thus determined, a series of straight lines
which come to meet the radius, at different heights: for example, a quarter, a
half, or three quarters of its length, the inclinations of these lines determine the
inclination of the wing at these different heights, that is to say, determine the
pitch of the helix corresponding to these different points of the wing.

This is easily explained by the similarity of the triangles thus obtained, with
those which would have, on the one hand, the pitch H and on the other, the
development of the circles whose radii would be respectively 1

4⇢,
1
2⇢

3
4⇢ and

which would therefore be 1
2⇡⇢,⇡⇢, and 3

2⇡⇢.
For aerial propellers, we will adopt an analogous plot, only we will choose

the points on radius ⇢, at distances from the axis that would be multiples of
the module. We have seen that the beginning of the wing must correspond to
a value of the radius equal to 0.5M, that the maximum of yield as well as the
minimum of pitch correspond to ⇢ = M , and that the normal wing had a length
of 5 M. We will subdivide the wing (fig. 7) in equal parts corresponding to
increasing values of the module:

0.5 M, 1 M, 2 M, ..... 5 M.
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The points A, B, C, D, E, .... K, thus determined, we will join them at point
M, taken on the axis of rotation, at the distance from the origin of the wing equal
to module; the directions MA, MB, MC, ....., MK, will represent the tangents to
the helical trajectories that describe in the air the different points A, B, C, ....
K. At these different points, the surface of the wing will, with these directions,
an angle of incidence ↵ = 1˚500, and the different sections of the wing, at these
points, be represented by rectilinear elements which will be inclined on the lines
MA, MB, .... MK, of the angle ↵. These rectilinear extended elements come
will have to cut the OX axis at different points, whose distance to the origin O,
will be for each point, equal to pitch divided by 2⇡, For a constant pitch helix,
all these points merge into one, since the pitch is the same for all the points of
the radius, but then the incidences are variable and diminish towards the end of
the wing; while for the wing with constant incidence, it is, on the contrary, the
pitch which increases towards the end of the wing, All the values of the pitches,
divided by 2⇡, that we adopted for our wing, at constant angle of incidence,
can be calculated once and for all, because they always correspond to the same
subdivisions of the radius: moreover, they can be expressed according to the
module. These values are obtained in the following way, We saw that:

H =
V

Ntang(� � ↵
and

H

2⇡
=

V tang�

2⇡Ntang(� � ↵)
,

but as:
v

2⇡N
= M ,

we will have:
H

2⇡
=

tang�

tang(� � ↵)
M

We can calculate, once and for all, the values of tang(� � ↵) corresponding to
increasing values of tang�, then tang� = 0.5, 1, 2, 3, .... 5, and divide the
second by the first. In the appendix table (Table C), these values have been
calculated up to tang�1 = 8, because in practice, the length of wings must
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exceed the value of tang�1 = 5, which we have adopted for normal wing, and
reach the value corresponding to tang�1 = 8.

When examining the table, we see that for the increasing values of tang�,

the values of
H

2⇡
begin by decreasing, since

H

2⇡
= 1.085M , for tang�0 = 0.5, up

to a minimum value 1.066M for tang� = 1, then increase gradually with the

increase of tang�. We also see that
H

2⇡
is expressed in terms of the module.

On the other hand, the module M represents itself the advance A, divided by
2⇡, so we have, for each value of tang�, to take the corresponding value H as a
function of the advance, and successively write H = 1.085 A, H = 1.066 A, and
so on; we see here that the pitch has not exceeded the advance of a quantity
which is respectively 8.5% and 6.6%, of this advance; it is this excess of the
pitch on the advance which constitutes the retreat of the wing, for the point
of the wing considered. For wings with constant incidence, and therefore with
variable pitch, this retreat is variable, it begins by decreasing the hub to the
length of the wing which is equal to the module, then it continuously increases
until the end of the wing.
On the contrary, for constant-pitch and variable angle of attack propellers, the
retreat is constant, for all the points of the wing, and it is the angle of attack
which decreases; it diminishes even so much that for a wing a little long, ex-
ceeding for example 3 modules, this angle becomes excessively small and the
efficiency of the helix decreases considerably; for if the wing is built so as to
have a proper retreat, the part of the wing adjacent to the hub will have a
too high angle of attack and the neighboring part of the extremity an angle of
attack too low, and in both cases use will decrease; it is even the reason that
in practice one generally gives the propellers, with constant pitch. a diameter
not exceeding the pitch. Indeed, the pitch is a little larger than the advance
A, so a wing which would have a length equal to half of the pitch, would be a
little more than half of the advance per turn A, and if it is equal to 3 modules
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it will have a length 3M = 3
A

2⇡
so a little less than

A

2
, which is equivalent to

about half the pitch. This explains the practical rule which consists of giving
the propeller, at constant pitch, a diameter which does not exceed the pitch.

By averaging the retreat for the wing with a constant angle of attack, we
find that between the limits taken for the normal wing, r0 = 0.5, and r1 = 5,
the average of retreat will be:

H �A = 0.11A, about 11% of the advance.

To draw the wing of the propeller at a constant angle of attack, there are
two ways: the first one, the one we just saw and which consists in carrying on
the radius ⇢ (fig. 7), from the origin 0, lengths respectively equal to 0.5 M, 1
M, 2 M, etc. ..., up to 5 M, when it comes to the normal wing, or more, if the
calculation requires it; these values correspond to the values tang� increasing
from 0.5 to 5; we will thus obtain a series of points A, B, C, .... K. Then we

will carry on the axis of X, from the origin, lengths respectively equal to
H

2⇡

corresponding to the same increasing values of tang�; the values of
H

2⇡
will be

taken from Table C. It will get a series of points A ’. B ’. C ’..., K’, whose
most recent next will be, not A ’, but B’ since the length OB’ is minimum. We
will join each of the points of the axis OX with the corresponding point of the
radius, we will thus have a series of straight lines A’A, B’B, C’C, .... K’K, which
will represent the inclination of the wing for each point of the radius. Taking
on the line OX a point M, at the distance of the origin, such that OM is equal

to the module, OM = M =
A

2⇡
=

V

2⇡N
, and joining this point to each of the

points A, B, C, .... K, of the radius, the angles that will make these lines with
the straight lines A’A, B’B, .... K’K represent the incidence under which each
of the sections of the wing will meet the fluid threads; these incidemces are all
the same and equal to the optimum incidence.

We will then determine the width of the wing at different heights A, B, C,
.... K, as we will see below, and
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in fig.7. these templates have been (missing line here...) once the templates are
cut, they are bent, following the radius ⇢ corresponding to the number of the
template, and they are stored in their respective places on a board, to thus form
the helical surface, on which the wing will be presented.

The second method, which is simpler, consists of carrying, as previously, the
points A, B, C, .... K, on the radius, according to the increasing values of the
module, from 0.5 to 5 (FIG. 8), then, take the length of the module on the X
axis, to the point M, and lead the lines MA, MB, MC, .... MK. We will thus
obtain the trace of a constant pitch, in which the pitch is precisely equal to the

advance per revolution, since M =
A

2
and at the same time are

H

2⇡
= M .

In this wing, the angle of attack is zero; if this wing turned, at its normal
number of turns N, and advanced with the speed V in the direction of the axis
OX, it would not exert any longitudinal thrust; so we could not use it as we
have just sketched it.

Once this wing is executed according to the data above, it is at the moment of
fixing it to its hub that it will be necessary to place it so as to obtain the constant
angle of attack. For that, it will be enough to turn it around its principal radius,
of an angle equal to the desired incidence, and to fix it definitively, with the
hub of the tree, in this new staggered position. We understand easily this offset
of the wing has the effect of rotating, from the angle ↵, all the elements, which
were represented on our path (fig. 8) along the lines AM, BM, .... KM. If we
redraw the new wing thus shifted, the new elements would be represented by
straight lines making, with the old directions, angles ↵ and intersecting with
these old directions on the radius ⇢. This new sketch would be precisely that
which we indicated in the first method of drawing.

As generally, in aerial propellers, the wings are reported, this second method
is preferable to the first, because it is simpler.
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In our opinion, it is a mistake to attempt to give to the wings of aerial
propellers the slight concavity usually given

to the levelers, in order to increase their power capacity, the proportional
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decrease in weight worn; and moreover the strength of the device can only gain
from it; we are left by increasing a little the power of the engine. While it
is not the same for thrusters; their function consists in using, for propulsion,
the power of the engine as best as possible: a diminution of the weight of the
propeller has only an insignificant influence on the total weight, and on the
contrary any increase of the harmful resistance even slight, leads, as we have
seen, a very noticeable decrease in the use of propelling. The defenders of the
concave wing system often invoke, in favor of their thesis, the argument that the
air streams enter without impact on the surface of a concave wing, tangentially
to the input element, and that these nets are deflected gradually to exit along
the output generator, after having, by their reaction on the wing, produces
the maximum thrust, similar to what happens in the curved-wing turbines. In
our opinion, the two phenomena are not comparable; for in the turbines it is
only a single bundle of isolated threads which strikes the curved wing, and it
is in fact entirely deviated; while the wing of the propeller meets its full width
parallel fluid threads, and if those entering tangentially through the generator
of inputs can be progressively deflected by the concave surface of the wing, as
in a turbine, the same is not true of all the other strings which strike the surface
of the wing in all its width and especially towards the rear part, at angles of
incidence increasing and greater than the optimum angle, which considerably
reduces the efficiency of the thruster. That is why, until proven otherwise, we
think it better to give the wings of propellers. flat helical surfaces, not concave,
Once again, it is up to the aerodynamic laboratory to decide this question. If

the laboratory tests showed that the ratio µ =
f

P
, for hollow surfaces, is not

greater than it is for flat surfaces, that is to say that the forces ƒ and P grow in
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the same proportions, it is obvious then that it would have all the advantage to
wings of hollow propellers.

In the above we have determined, for aerial propellers; 1� the conditions of
their maximum yield; 2� the incidence to be given to the propeller elements; 3�
the dimensions that should be given to the length of the wings, and 4� the way
of plotting the pitch at the different parts of the wing; we have yet to determine
the transverse dimensions of these wings, in other words, the width of the wing
at the different radii.

For that, let us go back to the initial equations that serve to determine the
motive power and useful power necessary to propel our airplane at the desired
speed.
We have:

⇣M = PV (cos� + µsin�) tang�
⇣U = PV (sin� � µcos�)

Considering the elementary work per second we will have:

d⇣M = V (cos� + µsin�) tang�.dP
d⇣U = V (sin� � µcos�) dP

For a constant incidence ↵, the useful elementary thrust dP , will depend on
the square of the speed with which the element in question encounters the gas
molecules, the dimensions of the element and a empirical coefficient that we will
call �, we will have:

dP = �W 2ds

calling W the speed of the element with respect to the air and ds its surface.
This presents a difficult question, it is the judicious choice of the coefficient �.
It is certain that it will be only through tests carried out in an aerodynamic
laboratory that it becomes possible and even easy to determine exactly the
exact value. This is the third time that, in the course of this study, we have
come up against difficulties which only an aerodynamic laboratory is able to
solve; therefore, the imminent need for the establishment of a laboratory of
this kind can not be overemphasized, because it is only through this laboratory
that we can determine the exact values of µ, ↵ and �, these three important
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parameters, without the exact knowledge of which, the establishment of, not
only good aerial propellers, but also good airplanes, is absolutely impossible;
until then it depends on more or less happy chances. In the absence of more
precise data, we will adopt for � a value which seems to respond quite well to
reality, especially for the propeller wings, which are narrow and long surfaces
attacking the air by their longest side; this value of � would be, perhaps, a little
strong for ordinary plans, especially if we use empirical formulas proposed by
Colonel Duchemin, Hutton, Loïsel, M. Eiffel, etc., or a little weak, if we are to
believe from other modern experimentalists, such as Langley, Maxime, Captain
Ferber, and several other aviators. However, I think that we can adopt, without
much error, � = 0.03, expressed in kilograms, for one square meter of propeller
wing, attacking the air under the optimum incidence, at a speed of 1 meter per

second. As for the actual speed of the element, it will be W =
V

cos�
.

To determine the surface of the propeller element, we will call the width of
the wing l and d⇢, the height of the slice considered along the radius ⇢; we will
have, for the expression of the elemental power:

d⇣U =
�V 3 (sin� � µcos�) l.d⇢

cos2�

d⇣M =
�V 3 (cos� + µsin�) tang�l.d⇢

cos2�

and for the total power, by calling a the number of wings:

⇣U = a.�.V 3

R
r1

r0

sin� � µcos�

cos2�
l.d.⇢

⇣M = a.�.V 3

R
r1

r0

cos� + µsin�

cos�
tang�.l.d⇢
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It is by means of these equations that we will be able to determine l.
Theoretically it can be done indifferently either from the expression of the

useful power or from that of the motive power: however, in practice, it is prefer-
able to base oneself on the motive power; it is the only one we know, since it can
be measured directly on the engine shaft, while for the useful power it must be
deduced based on the performance of the thruster that we do not always know.

We will therefore adopt this first method of calculation and we will seek to
deduce the width l, from the expression of the motive power.

In the equation of the motive power, replace tang� by its value
2⇡N⇢

V
, and

divide the numerator and the denominator by cos�, we shall have:

⇣m = 2⇡N↵�V 2

R
r1

r0

1 + µtang�

cos�
.l.⇢.d⇢.,

In this expression, ⇣M denotes the engine power in kilograms on the propeller
shaft, a the number of wings, N the number of revolutions of the propeller per
second, V the speed of advancment of the airplane, in meters per second, and
l the width of the wing in meters at the different radii ⇢, corresponding to the
successive values of tang�. The width l is the corrected intersection of the
surface of the wing by a cylinder of radius ⇢, and whose axis would be the axis
of rotation of the thruster. To derive from this equation the different values of
l, corresponding to the successive and increasing values of tang�, we must link
the variables l and ⇢ by a relation of dependence chosen by the consideration of
the form to be given to the wing; this form can be modified at will by modifying
these dependency conditions. We can, for example, adopt, as a condition, that
the transversal thrusts experienced by the different cylindrical sections of the
wing, represented by the helical bands of length l and height d⇢, be distributed
along the radius according to a function of this radius such that C'(⇢), or C, is a
parameter to determine. The elementary thrust being expressed by C' (⇢) ⇢d⇢,
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the power of the engine torque will be:

⇣M = 2⇡N.↵

R
r1

r0
C.' (⇢) .⇢.d⇢.,

on the other hand we have the expression of this same motive power:

⇣M = 2⇡N↵�V 2

R
r1

r0

1 + µtang�

cos�
l.⇢.d⇢,

let’s match these two expressions:

C' (⇢) = �.V 2l
1 + µtang�

cos�
,

from which:

l =
C.' (⇢) cos�

�.V 2 (1 + µtang�)
.

To determine the parameter C, let us deduce it from the previous
equation:

C =
⇣M

2⇡N↵

R
r1

r0
' (⇢) .⇢.d⇢

,

and replacing C by this value in the expression of l, one has:

l =
⇣Mcos�' (⇢)

2⇡.N.↵.�.V 2 (1 + µtang�)

R
r0

r0
' (⇢) .⇢.d⇢

,

replace ⇢ by its value ⇢=
V tang�

2⇡N
, in addition, let

⇣M
75

= F , which will express
the power of the engine in horsepower on the axis of the propeller, replace � by
its value � = 0.03 and ⇡ by 3.14, let us perform the calculations, we find:

l =
15494F.N

↵V 4

R
tang�1

tang�0

' (tang�) tang�.dtang�
.

cos�

1 + µtang�
' (tang�)
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There is an infinity of functions '(tang�) that can be chosen to determine
the shape of the wing, There is one particular very interesting and that can
have a direct application for the wings of aerial propellers; it is the one where
the width l remains constant all along the wing. We will call this special width
a specific width and we will designate it by the letter L.

To do this we must find a function which makes the value of L constant.
To satisfy this condition will require that the variable '(tang�)cos�

1+µtang� is equal
to unity, or:

' (tang�) =
1 + µtang�

cos�
= (1 + µtang�)

p
1 + tang2�,

which will give us:

L =
15494FN

↵V 4

R
tang�1

tang�0

(1 + µtang�)
p
1 + tang2�.tang�d (tang�)

,

To make integration easier, Let us say:

� =
p

tang2� + 1 + tang�,

therefore:

�0 =
p
tang2�0 + 1 + tang�0 and �1 =

p
tang2�1 + 1 + tang�1,

which will give us, after integration between the given limits �0 and �1:

L =
247820.F.N

↵V 4

"
µ

4

✓
�4
1 � �4

0 � 1

�4
1 � �4

0

◆
+

2

3

✓
�3
1 � �3

0 +
1

�3
1 � �3

0

◆

+2

✓
�1 � �0 +

1

�1 � �0

◆
� 2µ⇣

�1
�0

#

For the normal wing for which r0 = 0.5 and r1 = 5, taking µ = 0.05, we will
have, in doing the calculations:

L = 298.5
FN

↵V 4
.
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We know that in the case of an elongated rectangular flat surface, attacking
the air at a small angle, the resistance is much greater when the air is attacked
by the wide width than if it was by the small. This is explained to a certain
extent by the consideration that, in the attack by the small side of the rectangle,
the air can more easily flow through the long sides of the pallet, while when it
is the big side that attacks the air, the lateral flow is much reduced, since it
is proportional to the length of the slice, and that slice, in this second case, is
smaller. so it will be advantageous that the ratio of the width of the wing to
its length is low: take for example the constant ratio of 1

6 between the width of
the wing and its length, it is a report which seems to give good results in the
practice.

So let us ask
L

r1 � r0
=

1

6
; but we know that:

r1 � r0 =
V

2⇡N
(tang�0 � tang�0),

and for:

tang�0 = 0.5 and tang�1 = 5,

we will have:

r1 � r0 =
V

N
0.717 .

Division L by the value found for r1 � r0 we will have:

L

r1 � r0
= 416.8

FN2

↵V 5
.

As, on the other hand, we have assumed that in normal propellers the ratio
L

r1 � r0
, should be 1

6 , replacing this ratio by its value we will have:

1 = 2500
FN2

↵V 5

from where:

a = 2500
FN2

V 5 .
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We will name this expression the equation of compatibility, because it will be
used to determine the compatibility of the four quantities involved, the power
in HP, the number of revolutions N from the thruster per second, the velocity V
of the airplane in meters, and ↵, the number of blades of the propeller. When
we have an aerial propeller to be determined, we will have to start from a base,
this base will be first of all the power necessary to remove the airplane and
the speed of its advance; these data are independent of the propeller, starting
from these data it will be necessary to calculate the propeller so that its number
of revolutions to the second and its equation of compatibility is satisfied. The
number of wings thus determined will obviously relate to normal wings. If the
operating conditions of the propeller were such that the compatibility equation
could not be satisfied, that is, the number of wings found by the computation
was too great, or did not give an integer, it will be necessary either to increase
the length of the wings, as we shall see later, or to increase their width, in
proportion to the number found by the calculation, to the adopted figure.

It must be realized that this compatibility equation is a perfectly legitimate
convention and that we have all the right to do; it simply means that the
number of normal wings, computed by the equation of compatibility, running at
a number of revolutions N per second, and advancing in the air with a velocity
of V meters to the second, absorb a motor power of horsepower; moreover, that
the specific width of these wings is equal to the sixth of the length of the wing.

Let us take again the expression of the specific width which we have just
found:

L =
298.5FN

↵V 4
,

divisions this width by the module M =
V

2⇡N
, we will have:

L

M
= 1875

FN2

↵V 5
.

Here we find the expression we have just seen in the compatibility equation.
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Let us replace, in
L

M
, this expression by its numerique value:

L

M
=

1875

2500
= 0.75

then

L = 0.75M

which means that for a normal wing, to which a constant specific width has
been given, this specific width will be the 3/4 of the module.

This value of the specific width can also be deduced from the ratio we have
assumed between the specific drop and the length of the wing, which is 1/6 as
the length of the wing is 4.5 modules, the sixth which represents the specific
width will be

L =
4.5

6
M = 0.75M

The wing shape with constant specific width L, will be one of the best to use
for aerial propellers; it will be a rectangle whose height is 4.5 times the module,
and its width, equal to 3/4 of the module the wing will start at a distance of half
a module of the axis and its radius will be 5 modules.

In this way the normal wing with constant specific width is completely deter-
mined in all its elements, all of which are expressed in abstract digits, because
they all have the module for common scale.

For the general expression of the specific width express in module, it will be

necessary to divide the general expression of L by M and replace the term
FN2

↵V 5

by its numeric value
1

2500
at that we will then have:

L

M
=

622.7

µ

4

✓
�4
1 � �4

0 � 1

�4
1 � �4

0

◆
+

2

3

✓
�3
1 = �3

0 +
1

�3
1 � �3

0

◆

+2

✓
�1 � �0 +

1

�1 � �0

◆
� 2µ⇣

�1
�0
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If, according to this formula, the values of
L

M
are calculated by r0 = 0.5 and

r1 successively equal to 5, 6, 7, 8, modules, we find the figures:

for r1= 5M, 6M, 7M, 8M
L= 0.75M, 0.427M, 0.275M, 0.175M.

We see that the specific width, for r1= 5, is 0.75 modules, that is to say 1/6
of the length of the wing; for r1 = 6, this specific width is only 1

13 , for r1 = 7 it
is 1

25 and for r1 = 8 only 1
44 of the length of the wing. So if we wanted to, for

all these wings have the ratio of 1/6, assumed for normal wing, we will have to
increase the length of the second wing in the ratio of 2.1, the third in the ratio
of 4.1, and the last in the ratio of 7.3. Therefore a propeller having a radius
r1 = 8, and whose wing width is 1/6 of the length, as in normal wings, would
have an active propulsive surface 7.3 times too large. Also, when the equation
of compatibility shows that the number of wings required a, is greater than the
number we wish to adopt, and which will have to be multiplied by the ratio
a

a0 , the wing widths used, we can always find an outer radius r1, greater than
5, such as the specific width of the wing, divided by the length of the wing

L

r1 � r0
, and multiplied by the ratio

a

a0 , exactly equal to 1
6 , the ratio allowed

for normal wings.
So if the ratio

↵

↵0 was for example 7.3 then we would have to give to r1 a

value of 8 M, and a wing width equal to 1
6 of its length; the number a

0
of wings,

thus modified, would be equivalent to normal wings, that is to say, would absorb
the driving power F, turning at N turns, and advancing at the speed V. Let us
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take the general expression of the width of the wing:

l =
15494FN

aV 4

R
tang�1

tang�0

' (tang�) tang�.d (tang�)
.

cos�

1 + µtang�
' (tang�).

Divide by M =
V

2⇡N
, the two members of the equation, we will have:

l

M
=

97290FN2

aV 5

R
tang�1

tang�0

' (tang�) tang�.d (tang�)
.

cos�

1 + µtang�
' (tang�)

We have just seen that in the compatibility equation
FN2

aV 5
=

1

2500
, we can

therefore replace this expression by its numerical value and it comes:

l

M
=

38.9R
tang�1

tang�0

' (tang�) tang�.d (tang�)
.

cos�

1 + µtang�
' (tang�),

or, to abbreviate the notation, designate by & = tang�. by &0 = tang�0 by
&1 = tang�1 and &

0
= cos�, there will be:

l

M
=

38.9R &1
&0

' (&) .&.d&
.

&
0

1 + µ&
' (&),

an expression independent of power F, the number of turns N and of the ve-
locity V, and depending only on the various values of &. It is understood that
this expression is true only if the conditions determined by the compatibility
equation are assumed.
It is by means of this equation that one determines the number of wings neces-
sary for the given conditions. However it could happen that the number of wings
calculated differs from the one that could be used, in practice, for the given case;
then, if the difference between the two numbers were small, we would be content
to multiply the widths of wings, than we will have calculated by means of one of
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the formulas above, by the ratio of the number of wings that will determine the
equation of compatibility and the number of real wings, We will call this ratio
q =

a

a0 the coefficient of reduction; by calling the number of wings calculates
and the real number, In the case where the ratio q becomes too large, close
to 2 for example, or above all higher, it would no longer be possible to apply
this method, since the lengths wings thus obtained would become more than 1

3
their length, which for the wings of an aerial propeller would be exaggerated; it
would be appropriate then to give up the wing we have adopted for the normal
wings and that is 5M, and increase this length up to 6M, 7M, 8M, and perhaps
beyond that. It would be necessary in this case to calculate the wing widths
directly by the general formulas, giving to & the adopted value. Thus, for the
case of the computation of the specific width L we will take:

L

M
=

1556310.F.N2
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by doing:

�0 =
p
&20 + 1+&0, and �1 =

p
&21 + 1 + &1.

We will increase the value of &1, until the width obtains L, is about 1
6 or 1

5 of
the length of the wing which is &1� &0 always assuming for &0 the value &0 = 0.5.

If one wanted to give the wing, not the form of equal specific width, but a
different form, one would use the general formula:

l

M
=

97290F.N2

a.V 5

R
&1

&0
' (&) .&.d (&)

.
&
0

1 + µ&
.' (&),
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by choosing, for ' (&), a function which gives the wing the desired shape.
One could also, as we have shown above, adopt for; &1 a value such that the

corresponding specific width, multiplied by the reduction coefficient q, is about
1
6 or 1

5 of the length of the wing, So, we have seen that for the values of &1 equal
to 6M, 7M, and 8M the corresponding specific widths were 1

13 , 1
25 and 1

44 of
the length of the wing, respectively; Therefore. if we multiply these widths by
a coefficient q, which would be, for the first wing, of 2.1, for the second, of 4.1.
and for the last, 7.3, we would still obtain a wing whose width would not exceed
1
6 of its length.

We have shown that, under the conditions of satisfying the equation of equiv-
alence, wing widths could be calculated by the general formula:

l

M
=

38.9R
&1

&0
' (&) .&.d (&)

.
&
0

1 + µ&
.' (&),

and that properly choosing the function ' (&) could achieve the wing shape that
was desired.

We will review a number of these functions which will give us wing shapes
applicable to aircraft thrusters, either directly or in combination with other
functions.

One of the simplest is ' (&) = & + p, where p is an arbitrary parameter that
can be varied at will.

By replacing ' (&) with the function adopted, we obtain after integration:

l

M
=

233

2 (&31 � &30 ) + 3p (&21 � &20 )
.

&
0

1 + µ&
. (& + p),
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and for the normal wing, between the limits &0 = 0.5 and &0 = 5:

l

M
=

233

249.7 + 74.3p
.

&
0

1 + µ&
(& + p) .

For example, to show the most convenient way to group calculations, we

have, in table D, presented the calculation widths of a normal wing
l

M
, by the

formula above, adopting for p the value p = 1.

In the first horizontal line, we have arranged the successive values of &, from
& = 0.5 to & = 6; below, we have given the corresponding values of &+p assuming
p = 1. In the third line come the logarithms of the numbers of the preceding

row. Below are the logarithms of the variable factor
&
0

1 + µ&
, whose successive

values have been calculated once and for all from & = 0.5, up to & = 8. These
values, which appear in the table E of the appendix have been calculated for
values of & varying by one unit up to & = 5 and by half a unit from & = 5 to
& = 8. This has been made with a view to the possibility of adopting for &,
greater than 5M, an intermediate value between two integer values of &: and
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in this case the logarithm corresponding to one of these intermediate factors
proved to be necessary. In the fifth horizontal row we say again in each column.
the logarithm of the constant factor

233

249.7 + 74.3p
which for p = 1, gives the

logarithm of 1.8569.
By making in each column the sum of the logarithms of the three factors

& + p,
&
0

1 + µ&
, and the constant factor, we obtain the logarithms of widths

l

M
.

which are the numbers in the sixth row. Below these logarithms are arranged
the actual values of the widths sought.

In the figure 9 we have represented graphically the curves which give the
widths of wings calculated by the formula above and in which we successively
varied p. since p = 0, p = 1, p = 2, up to p infinity, which corresponds to ' (z)
= constant.

Looking at this figure, we see that the wing, determined by the curve that
corresponds to p = 0, is very narrow at the bottom and widens towards the
end. By increasing the value of p, the wing progressively widens at its origin
and retracts at its end; for p = 1, the wing shape obtained is directly applicable
to the air thrusters. With the increase of p, the wing widens considerably at
the bottom and becomes very narrow towards its end. This form of wing can
no longer be used in practice, in its current state, but could be combined with
another form which would, on the contrary, be narrow at the bottom and broad
towards the end. In this case half of the widths would be calculated by means
of one formula, and the other half by means of another suitably chosen one, and
the sums would be made.

We wanted to indicate how the shape of the wing changed with the variation
of the arbitrary parameter, to show the ease with which we can obtain a de-
sired wing shape by appropriately choosing the function ' (z) and the arbitrary
parameters.

In figure 10 we have grouped the curves obtained by another function:

' (z) = z2 + p.
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In that case; the deviant equation:

l

M
=

155.6

(z41 � z40) + 2p (z21 � z20)
.

z
0

1 + µz

�
z2 + p

�
,
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and for the normal wing between the limits z0 = 0.5 and z1 = 5.

l

M
=

155.6

624.9 + 49.5.p
.

z
0

1 + µz

�
z2 + p

�

The three curves in figure 10 have been calculated by successively giving p
the values of p = 0, p = 1 and p = 5.



44

The first of these curves is very narrow at the bottom and widens upwards;
the second is less accentuated than the first and the third narrows the wing
slightly towards its center. This last form could be combined with a form which,
on the contrary, would widen a little towards its middle: one could arrive there,
for example, by the function ' (z) = pz2 � z3 + q in which p would be greater
or equal to z1and q arbitrary:

One would then have:

l

M
=

778

5p (z41 � z40)� 4 (z31 � z30) + 10.q (z21 � z21)
.

z
0

1 + µz

�
pz2 � z3 + q

�

One could vary to infinity the choice of various functions; we will, however,
confine ourselves to those we have passed in review, because they are amply
sufficient for the calculation of the wing widths of an aerial propeller, especially
since the shape of an aerial propeller will always have to be close to a common
type, generally long and narrow,

Of all the forms of wings that can be adopted for an aerial propeller, it is
still that of constant specific width which is the most convenient to calculate
and which will most often find its direct application. It also has the advantage
of facilitating the comparison of the different propellers with each other.

The wings we have just reviewed are all the same length, of 5M, they rotate
at the same number of revolutions N, advance with the same speed V, the
same motive power F: they are therefore all equiactive, and their propulsive
surfaces have the same mechanical efficiency, notwithstanding the very notable
differences in their geometrical dimensions. This shows how much the active
surface of the wing is different from the geometrical surface. Also, when we say
that it is appropriate to give the propeller such a propellant surface, it means
nothing at all, as long as we have not indicated the distribution of this surface.
This is easy to understand. For a square centimeter of propellant surface will
have a very different mechanical action depending on whether it is placed in
the vicinity of the axis of rotation or towards the end of the wing, the thrusts
produced being proportional to the squares of the speeds and therefore the radii.
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In addition, the inclination of this propulsive element will be different according
to its position on the wing and, therefore, it will absorb a different motive power
depending on whether it is more or less inclined.

It follows that it is impossible to determine the active surface of a helix
by its geometric surface, or its average pitch fraction, as is very often done by
ignorance or routine.

Whenever, for a wing, we want to determine the active surface, it is essential
to deduce from the mechanical elements of its operation. Also, we constantly see
absolutely equiactive wings, differ considerably from the point of view of their
geometrical surface, and reciprocally from the wings of the same geometrical
surfaces have absolutely different mechanical effects.

All the wings that we have just reviewed are rigorously equiactive and yet,
as can be seen in figures 9 and 10, they differ very substantially in terms of
their geometric surface. They are, moreover, all equiactive with the wing with
constant specific width in which the width L is equal to 3

4 of the module. So
here is a way to compare the different propellers with each other; it is sufficient
to replace them by their equiactive form, with a special width constant, and the
ratio of these specific widths will rigorously give the ratio of the active surfaces
of these propellers.

This is true, not only for propellers of the same diameter, but also for those
of different diameters, provided that one has to deal with normal wings.

Because, for normal wings, we know that the specific width is equal to 0.75M,
we will immediately have the equi- active form of the given wing, if, however,
at construction, the wing widths have not been multiplied by a reduction co-
efficient. It will be easy to be convinced of this by doing the mechanical (and
not geometrical) averaging, the widths of the given wing, corresponding to the
radii of the wing of a multiple of module.

For this we will sum the products of these widths by the squares of the
corresponding radii and we will divide it by the sum of the edges of the radii;
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we will thus have the average of mechanical width which corresponds to the
specific width: this average will be:

L =

P
l.⇢2P
⇢2

.

It is understood that in this equation all these quantities are expressed as a
function of the module, therefore in abstract numbers.

When the value of the specific width of the wing has been increased, it will
be easy to compare it with the normal specific width if the adopted widths have
not been multiplied by a coefficient of reduction, and we find this coefficient if
it was used.

This mode of comparison of the wings of the propeller, which consists in
transforming the wing into an equiactive wing with a constant specific width,
can even be applied to the wings with variable angle of incidence, as are the
wings with constant pitch. Only in this case will it be necessary to take into
account for each band, which represents the width of the wing at the given
radius, its own incidence: and since the thrusts are substantially proportional
to the incidences, it will be necessary, in the mechanical average, to take into
account these incidences by posing:

L =

P
l
↵

0

↵
.⇢2

P
⇢2

,

↵
0
being the actual incidence of the band whose width is l. and ↵ constant of

optimum incidence. This mechanical average is sufficiently accurate. This will
result in a wing with constant incidence and constant specific width, completely
equiactive with the wing of variable incidence and of any shape. The constant
specific width can therefore be used for all the propeller wings.
It is understood that for all wings, whatever they are, we assume once and for
all the radius of the hub z0 = 0.5.
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We have seen that all elements of the wing, without exception, express them-
selves according to this common measure which is the modulus: moreover, for
the normal wings, all these elements are constant and do not vary from one pro-
peller to another; thus the spokes of the hub and the wing are always expressed
by:

r0 = 0.5M and r1=5M ,
the lengths taken on the intermediate radii are always the same:

0.5M , 1M , 2M , 3M , 4M and 5M ,

the wing widths, at these radii, are also the same, whether for the specific width,
which is 0.75M , or for the widths calculated by one of the formulas above; they
will always be the same for the same radii. As for the variable pitch of the
wing, it is also always the same expressed according to the module, for the
same point of the radius. In this way, it can be said that there is only one
normal wing whose dimensions depend on the size of the module. If, then, we
calculate once for all the elements of a normal wing, this calculation will serve
for all the normal wings which may exist; the same will be the case with the
normal wing, which will serve indifferently for all normal wings; only the scale
will change. This scale is the modulus, it depends on the operating conditions
at the given wing since it depends on the speed and the number of revolutions.
With regard to the number of wings to be used for each case, this number is
determined, as we have seen, by the equivalence equation. So we see that we
can calculate and plot any propeller using only the equation of compatibility
and the table computed, once and for all, which will determine the elements of
the wing according to its module.

In most cases, the normal wing should be able to be applied, thanks to
a judicious choice of the elements that will be adopted in the compatibility
equation. In the case, however, where this equation could not be satisfied, it
would be enough to increase the radius of the wing.
So we come to this conclusion that the thruster is not strictly speaking, the
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propeller, but that it is the wing which is the organ of propulsion and that this
organ is always the same, albeit on a different scale: it is not that the number
of these organs must be greater or less, according to the motive power to be
absorbed, and that is what determines the equation of compatibility.

This, then, is the final result to which we have been led on the basis of a
perfectly correct and legitimate postulate: this postulate has been the determi-
nation of the resistance experienced by a plane element moving along a helical
path and meeting the fluid threads under a plane, certain incidence. In the whole
series of our reasonings, we have made no hypothesis, and we have been led by a
series of logical deductions and rigorous computations to the conclusions which
we have just formulated. We can thus affirm without fear that the present the-
ory of helical thrusters is strictly accurate, at least qualitatively, because from
the quantitative point of view, it obviously depends on the coefficients adopted
in the course of this study. If their numerical values were different from those
which we assumed, nothing would be changed in the theory, and it would suffice
to modify the results of the calculations in proportion to these new coefficients.
So, to obtain absolutely correct results, with the propeller conception that we
possess thanks to this theory, we have only to determine in a precise way and,
once and for all, the numerical values coefficients that we used. This deter-
mination can only be made in a rigorous manner in an aerodynamic testing
laboratory.

Elsewhere we have indicated how to organize a laboratory of this kind.
It should consist of a large diameter tunnel in which an artificial air current

would be circulated at a speed equal to that which could be achieved by an
aircraft in calm air. It is in this current of air that one would install, with sta-
tionary station, the devices to be experimented, such as levellers and thrusters.
These devices should be of natural size. Propulsive propellers should be tested
as follows. A dynamometric scale with an electric motor should be installed in
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order to record directly the resistance torque, the number of revolutions and
the longitudinal thrust. It is easy to imagine a scale of this kind, as rigorous
as one would like; one could even take as a model the one that Colonel Renard
had built for liftimg propeller testing at Chalais-Meudon. On the rotating shaft,
the propeller to be tested would be installed, the air flow in the tunnel would
be regulated at a determined speed V, and the wings of the propeller would be
constructed so as to have a constant pitch exactly equal to the lead per turn

which is
V

N
, where N is the number of turns which should rotate the propeller

shaft. When the propeller would operate under these conditions, the angle of
attack would obviously be zero, since the pitch would be equal to the advance;
in this case, the longitudinal thrust would be zero, and all the motive power
would be expended to overcome the friction of the air on the wings. The value
of the resistive torque and the number of revolutions of the helix would give
the measure of the power absorbed. Simultaneously varying the speed of the
tunnel airflow and the rotational speed of the propeller, so as to maintain the

constancy of the ratio A =
V

N
, we would have, under these different conditions,

the values of the power absorbed by the friction of the wings in the air. The
curve of these powers would be drawn up as a function of the increasing speed.
This first series of tests would be intended to determine one of the parts of the
ratio m which, as we have shown, consists of a term that is tang↵. and another
which is due to the friction of the wing in the air. In this first experiment, ↵
being zero, it would be the second term alone that we would measure. After
this first series of tests, the wings of the propeller would be shifted on the hub,
rotating them by 1 degree around their main radius and in the direction of pitch
increase. This offset would give the wings an angle of attack a = 1˚, that the
advance per revolution remains the same as before, that is to say that the num-
ber of revolutions of the propeller is always proportional to the velocity of the
air current. In this new series of tests, we will obtain a longitudinal thrust that
we measure for each speed, This thrust, multiplied by the speed of the current,
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will represent the useful power, and the ratio of the useful power to the motive
power, recorded directly, will give the utilization coefficient K. In addition, the
resistive torque will give the measure of the harmful resistance f , while the lon-
gitudinal thrust will measure the useful thrust P. The ratio of these two forces
will determine the numerical value of µ.

After this second series of experiments, the wings of the helix will be shifted
further by one degree, so as to increase the angle of attack and bring it to 2˚,
still under the same conditions of advance per turn. We will redo a new series to
determine the yield curve. After which we will shift the wings to 3˚ and we will
start the same tests, Comparing the yield curves in these three series of tests,
with 1˚, 2˚ and 3˚ from the angle of attack, we will see if the yields increase
or diminish. If they increase, the angle of attack will be further increased until
we reach the maximum yield. At this moment, by bringing the limits of the
variations of the angle of attack closer, it will be possible to determine rigorously
and once and for all the really optimum angle of attack. At the same time, the
average maximum efficiency of a propeller wing will also be determined. We will
then proceed to the verification of the coefficient �. For this, we will experiment
with normal wings with constant specific width equal to 3

4 of the module. The
propeller will be rotated by the number of revolutions N in an air stream of
velocity V, and the motive power expended will be recorded. If this motive
power is weaker or stronger than that indicated by the calculation, for the given
case, it is because the real � coefficient is stronger or weaker than that which we
have assumed; and it will be necessary to correct the assumed value � = 0.03,
by multiplying it by the direct ratio of the motor torque, calculated and real,
since we know that if:

P = �.s.W 2.↵

so if:

P
0
=�

0
.s.W 2.↵,

we will have the direct report:

P

P 0 =
�

�0 ,

calling �
0
the corrected coefficient and P

0
the measured thrust;
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so:

�
0
=

P

P 0 � .

This series of tests will allow us to determine rigorously and once and for
all this coefficient � on which the width of the wings depends, As a verification,
we experiment with a second propeller, in all respects similar to the first one,

but in which the specific width will have been modified in the ratio of
�

0

�
, so

we will find, in the new test, that the absorbed engine power is equal to that
calculated.

After this series of experiments, which are in short very easy to undertake,
all the quantitative elements of our theory will be rigorously known, and it
will then become possible to calculate, without the slightest error, propulsive
propellers, of maximum yield, for all given cases.

It would be quite unrealistic to attempt this kind of testing outside the
laboratory, or as it is generally believed to be able to determine the coefficients in
question using results provided by the continuous practice of aviation appliances
and llitle by llittle improving the propellers. We do not believe that a method of
this kind can give satisfactory results, since the measurements of the elements
of the problem are not possible in practical exercises, that is why we can not
emphasize enough the need for a laboratory.

As for the tests of propellers at the fixed point, as they are generally done,
this method is only possible for lift propellers, for others, it is absolutely false
and the results obtained by these tests have nothing in common with those that
would be found if the propeller worked in the actual conditions of speed and
number of revolutions. In the fixed point and running tests, the driving power,
the number of revolutions and the longitudinal thrust are absolutely different
in each case.

In the case of lift propellers, we will not deal with them in this study because
they fall less in the category of thrusters than in that of reaction fans. It does
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not seem possible for us to treat this question by the same method that we have
followed for the helicoidal thrusters, because for lifting propeller the phenomena
are quite different; we can not follow, as in the case of thrusters, the trajectory
of fluid threads, because we do not know their direction.

In front of the propeller, which turns at the fixed point, there is an aspiration
of air, and the fluid threads arrive on all sides to fill the depression produced,
so it is impossible to determine under what angles of attack they encountered
the wings of the lifting propeller.

At first glance, it would seem rational to use the power of the motor as
much as possible and to obtain the maximum of lift, to seek to have minimum
angles of attack, close to the optimum angle. Knowing the rotational speed
of the propeller, if we knew the direction of the threads of entry, it would
not be difficult to determine the necessary conditions, unfortunately we are
in the absolute ignorance of these directions, which are probably different at
different points of the propeller. On the other hand, the reduced pitch of the
helix, that seems to indicate no need for a low angle of attack, causes a large
propulsive surface, consequently a large diameter, many arms, and requires a
large number of turns of the propeller, otherwise the lift would be insufficient
since it is expressed by P = s.W 2.↵.�. All these conditions lead, in turn, the
need to give the propeller in question a great resistance, because we are dealing
with excessively considerable efforts due to centrifugal force; This weight is very
considerable for the lifting propeller, which will absorb, for its own account,
a considerable part of the lifting force. It will be, therefore, perhaps be more
advantageous to increase the pitch, even if you use less power. Anyway, the
issue of propeller lift seems to us very difficult to solve in practice and as we
can not treat it from the theoretical point of view, we did not seek to bring it
within the framework of this study.
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To show the ease with which, thanks to our method, a propeller can be
calculated for given conditions, we will, for example, calculate a normal propeller
and a special propeller for two different cases.

Let us first assume the case of an airplane which, moves at a speed of 20
meters per second, which equals 72 kilometers per hour, would require the use
of a 50 HP engine. This is, almost, the conditions of some current airplanes.

Let us say that the propeller is running at 600 rpm, or 10 revolutions per
second. We will have:

F = 20, V = 20, N=10.

We need to determine the number of wings in the propeller. We will have,
according to the equation of compatibility:

a =
2500H.N2

V 5
=

2500.50.102

205
= 3.906 .

So we can take a is equal to either 3 or 4. If we give three wings, it will
increase the width of the wings by the reduction coefficient q =

3, 906

3
; if,

instead, we give 4 wings, this coefficient becomes q =
3.906

4
, which is close to

unity. We will choose the number of 4 wings. As the equation of compatibility
has shown us that we can adopt an acceptable number of normal wings, we
will assume for the propeller normal wings. In the appendix, the elements of
a normal wing, elements which are always the same for all the normal wings
and all expressed according to the module. So we only have to determine the
module of our wing.

The module M will be
A

2⇡
or

V

2⇡N
for this case:

M =
20

2.3.14.10
=0m.318 .
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So the radius of the hub will be:

r0 = 0.5 · 0m.318,

which will give for the diameter of the hub:

d = 0m.318,

and for the diameter of the helix:

D = 3m.180 .

The number of wings will be 4.
For the plot of the helix, we divide the radius into equal parts to the module,

except the first division, which will be equal to half of the module:

In the table above we have arranged, in the first line, the divisions of the
radius to which correspond the variable pitch of the wing, These pitches are
arranged in the third line; they were obtained by multiplying, by 2⇡, the values

of the preceding row, which are
H

2⇡
M , taken themselves from the table in the

appendix. Lastly, in the last line, we have indicated the constant specific width
of the wing, which is obtained by multiplying by M the width indicated in the
table; moreover, we have multiplied it by the reduction coefficient q.

So all the elements of our propeller are determined enough to start construc-
tion.

As a second example, we will choose special conditions where normal wings
could not be used.

Suppose a dirigible balloon propeller driven by an engine de 100 HP, moving
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at a speed of 14 meters per second, that is 50 kilometres per hour. Suppose
moreover that the number of turns is 360 revolutions per minute, or 6 revolutions
per second.

Let us see if it will be possible to give the thruster an acceptable number of
normal wings; for this,

a =
2500 · 100 · 62

145
= 16.73 .

As in reality, we will only be able to use 4 wings at the maximum, we must
abandon the normal wings. The reduction coefficient will be:

q =
16.73

4
= 4.2 approximately.

We saw above that if we gave the wing a radius equal to 7M, then the
specific width, equal to 1

6 of the length of the wing, increased the active area
by 4.1 times. This is precisely what we have, appropriately, so we can take as a
limit for the wing, r1 = 7M .

To determine the modulus, we will ask:

M =
V

2⇡N
=

14

6.28 · 6 = 0m.371,

which will give us for the diameter of the hub:

d = 0m.371,

and that of the propeller:

D = 14 ·M = 5m.194,

the number of wings will be 4.
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In the table above, we have arranged, as before, the divisions of the radius
by multiplying the module successively by the numbers 0.5, 1, 2, 3, 4, 5, 6 and
7. Below we have inscribed the variable pitch of this wing by multiplying the
H

M
values, taken in the table of the appendix, by the module. Below, we have

indicated the constant specific width which is, as we have seen above, equal to
0.275 of the module for r1 = 7M , By multiplying this value by the reduction
coefficient q, we find a width 0m.427 which is about one sixth of the length of
the wing.

If we wanted to give the wing a shape other than a constant specific width,
one would take the calculated figures by one of the formulas which we indicated
above and one would multiply these figures by the module and by the reduction
coefficient q.

Before finishing this study on aerial propellers, we still have some observations to
make on the construction of the propeller wings, a construction which presents
some special difficulties. These difficulties result mainly from the condition
of very great lightness which the aerial propellers must satisfy by their very
purpose; moreover, these difficulties are further increasing because of the large
diameters and the number of considerable revolutions which it is necessary to
give to the air thrusters; in these cases we have to deal with formidable efforts
due to centrifugal force. For the wing to work in good conditions, it must, above
all, not deform. Now, this deformation is inevitable for a thin wing when it is
fixed on the arm of the propeller by the middle of its width, as is done ordinarily.
Suddenly, there is a twisting due to the position of the centers of thrust of the air
along the wing. When a thin plane attacks the air obliquely, the center of thrust
is cut back to the anterior edge of the plane at a point which depends on the
incidence; for very small impacts, like those we are dealing with for propellers,
we can assume that this center of thrust is at a distance, from the entrance edge,
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equal to a quarter or fifth of the total depth of the thin plane. assuming for
the wings of propellers a quarter of their width, we will be in conditions quite
close to reality, so there will be all along the wing a line dividing the wing into
two parts, one, before, one quarter of the total width and the other, to the rear,
occupying three quarters of the width of the wing, this line will be the link of
the centers of thrusts of the air. In order to avoid twisting the wing, it will be
necessary to make the resistant arm, on which the surface of the wing is fixed,
coincide. the wing, with this line of centers of thrust, For the wooden wings,
this line will have to correspond to the greatest thickness of wood.

There is yet another condition to which the thruster wing must be subjected,
it is that of not receiving harmful counter-pressure on its dorsal face; it is nec-
essary, for that, to avoid that the air strings come to meet a part of this dorsal
surface in a positive angle.

In order to satisfy these two conditions, a wing section similar to that shown
in figure 11 can be adopted.

This figure, which is the corrected cylindrical section of a wooden wing,
shows the active or pushing face of the wing in ACB. The line AC is straight
and has been drawn by the process which we have indicated above, it makes,
with the direction of the fluid threads, represented by the line MC, an angle
of incidence close to 2˚. The length AC is equivalent to three quarters of the
total width of the wing AB, at this point of the radius; the length CB is only a
quarter of this width. From the point C, corresponding to the thickest wing, the
pushing face becomes convex, following a curve, as smooth as possible, which
joins the entrance edge at a point B which is part of the dorsal side of the wing;
in this way, the front part of the wing forms an entrance spout whose tip is on the
dorsal face. This dorsal surface is constituted by a curve which, at the point B, is
tangent to the direction of the fluid threads parallel to MC, and which joins the
pushing face at the exit edge A, thus giving the wing as thin a section as possible
in its back part. A wing built on this model would not have a tendency to bend,
since the maximum thickness of the material is distributed along the line of
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the centers of thrust, and, moreover, it would receive on its dorsal surface no
harmful counterpressure; on the other hand, it has the disadvantage of meeting
the fluid threads under too high incidence, over the entire front part of the wing
thanks to the curvature of the beak; This disadvantage would certainly lower
the general coefficient of efficiency of the wing, but there is every reason to
suppose that this lowering would be inferior to that which would be suffered by
this same coeeficient if the wing were disposed so as to receive the fluid threads
on the back part of the wing.

We can also adopt this same wing section, when the wing is not made of solid
wood. It is possible to fix on the main beam, whether of wood or metal tube,
transverse chords having the same section as that shown in figure 11, and spaced
at a distance from each other along the radius, so as to form the helical surface
of the wing. On these chords one would tend, on both sides of the wing, either a
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resistance fabric or even a thin sheet of metal; it would have a light wing, rigid
and meeting the conditions of good operation.

If one wishes to build the wing with a thin metal blade, fixed on a rigid arm,
one will begin by giving to the blade the shape of the calculated helical surface,
then one will fix to it by one or several rows of rivets, or even by means of the
autogenous welding, to the arm of the propeller which will form a rib on the
dorsal surface of the wing; it is necessary to avoid naturally that the projection
of this rib is not too pronounced.

As well as from a constructive point of view, the biplane has an advan-
tage over the monoplane, so it seems to us possible to achieve good propulsive
propellers by doubling the wings one behind the other, and placing them at
a distance of about the width of a wing. This system, for thin metal wings,
could have the advantage of increasing the active surface, while considerably
increasing the solidity of the thruster; one could, in fact, connect the two par-
allel wings by transverse partitions curved along arcs of a radius corresponding
to their position on the wing; these bulkheads would be spaced along the wing
and triangulated by means of flat tie-rods working on the tension. Wings of
this kind would be cellular wings and the transverse partitions would prevent
air from flowing along the wing by channeling it in the transverse direction.
There is still a sort of propeller wing, little studied here, but which, in all
probability, will be used in the future successfully, it is the flexible and elastic
wing similar to the feathers of large birds. This wing could consist of a series of
flat springs fixed, by their thickest end, along the arm of the propeller, which
would also be flattened and form an entrance generator; these springs would be
spaced at a distance from each other and form together a helical concave surface.
The resistance of the springs to bending should be calculated so that the total
thrust on the wing, divided by the number of springs, is sufficient to straighten
the curvature of each spring, so as to give it a rectilinear direction doing with
the direction of the fluid threads a very small angle. It would be necessary that
the resistances of different springs are distributed in direct proportion to the
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square of the corresponding radius, that is to say that the springs of the tip of
the wing are much stronger than those of the base. The springs, once secured
and tested separately by the dynamometer, would be covered with an elastic
material which would be stretched at the moment of deformation of the springs.
A wing of this kind would be difficult to construct, but we believe that, if it
were properly calculated, it would achieve a propeller of very good performance.

We have reached the end of the task we have imposed on ourselves. In this
study we have sought to to explain, as clearly as we could, a method which gives,
on the question of helical thrusters, an overall view thanks to which it is possible
for the investigator to see through the eyes of the mind the invisible phenomena
that escape the physical view. This method is intended to enable the mind,
guided by calculation and knowledge of the mechanical laws, to orient itself
in the obscure maze of complex and little-known phenomena, or, for lack of a
common thread, it loses the notion of necessary relations, no longer distinguishes
them from contingencies and clings to the indications which he seizes, at random,
in the observations of current practice, perhaps indicative in some cases, but,
more often than not, seemingly misleading and distorting the reality of things.

For aviation, the perfection of thrusters is a question of the highest order,
for the solution of which the empirical methods of groping are absolutely in-
sufficient, it is therefore indispensable to illuminate it by the bright light that.
alone, projects a general and scientific method.

Happy would we be if, in this work, we have succeeded in bringing to the
question a contribution in this order of ideas.

Paris, 1909

S. DRZEWIECKI
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